Molecular Neurodegeneration | |
Ryanodine receptors: physiological function and deregulation in Alzheimer disease | |
Mounia Chami2  Frédéric Checler2  Dolores Del Prete1  | |
[1] Present address: Albert Einstein College of Medicine, Bronx, New York 10461NY, USA;CNRS, IPMC, Sophia Antipolis, Nice, F-06560 Valbonne, France | |
关键词: Amyloid beta; Amyloid precursor protein; Presenilin; Neurodegeneration; Endoplasmic reticulum; Alzheimer disease; Calcium; Ryanodine receptor; | |
Others : 861447 DOI : 10.1186/1750-1326-9-21 |
|
received in 2014-01-14, accepted in 2014-05-18, 发布年份 2014 | |
【 摘 要 】
Perturbed Endoplasmic Reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in Alzheimer disease (AD). Accordingly, different studies have reported alterations of the expression and the function of Ryanodine Receptors (RyR) in human AD-affected brains, in cells expressing familial AD-linked mutations on the β amyloid precursor protein (βAPP) and presenilins (the catalytic core in γ-secretase complexes cleaving the βAPP, thereby generating amyloid β (Aβ) peptides), as well as in the brain of various transgenic AD mice models. Data converge to suggest that RyR expression and function alteration are associated to AD pathogenesis through the control of: i) βAPP processing and Aβ peptide production, ii) neuronal death; iii) synaptic function; and iv) memory and learning abilities. In this review, we document the network of evidences suggesting that RyR could play a complex dual “compensatory/protective versus pathogenic” role contributing to the setting of histopathological lesions and synaptic deficits that are associated with the disease stages. We also discuss the possible mechanisms underlying RyR expression and function alterations in AD. Finally, we review recent publications showing that drug-targeting blockade of RyR and genetic manipulation of RyR reduces Aβ production, stabilizes synaptic transmission, and prevents learning and memory deficits in various AD mouse models. Chemically-designed RyR “modulators” could therefore be envisioned as new therapeutic compounds able to delay or block the progression of AD.
【 授权许可】
2014 Del Prete et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725001422194.pdf | 1563KB | download | |
63KB | Image | download | |
86KB | Image | download | |
70KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Lindeboom J, Weinstein H: Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease, and vascular cognitive impairment. Eur J Pharmacol 2004, 490:83-86.
- [2]Checler F: Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995, 65:1431-1444.
- [3]Wolfe MS: Processive proteolysis by gamma-secretase and the mechanism of Alzheimer’s disease. Biol Chem 2012, 393:899-905.
- [4]Delacourte A, Buee L: Tau pathology: a marker of neurodegenerative disorders. Curr Opin Neurol 2000, 13:371-376.
- [5]St George-Hyslop PH, Tanzi RE, Haines JL, Polinsky RJ, Farrer L, Myers RH, Gusella JF: Molecular genetics of familial Alzheimer’s disease. Eur Neurol 1989, 29(Suppl 3):25-27.
- [6]Tanzi RE, Bertram L: Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005, 120:545-555.
- [7]Zhang YW, Thompson R, Zhang H, Xu H: APP processing in Alzheimer’s disease. Mol Brain 2011, 4:3. BioMed Central Full Text
- [8]Golde TE, Cai XD, Shoji M, Younkin SG: Production of amyloid beta protein from normal amyloid beta-protein precursor (beta APP) and the mutated beta APPS linked to familial Alzheimer’s disease. Ann N Y Acad Sci 1993, 695:103-108.
- [9]Wolfe MS: When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 2007, 8:136-140.
- [10]Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003, 4:517-529.
- [11]Berridge MJ, Bootman MD, Lipp P: Calcium–a life and death signal. Nature 1998, 395:645-648.
- [12]Meldolesi J, Pozzan T: The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 1998, 23:10-14.
- [13]Dailey ME, Bridgman PC: Dynamics of the endoplasmic reticulum and other membranous organelles in growth cones of cultured neurons. J Neurosci 1989, 9:1897-1909.
- [14]Berridge MJ: The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002, 32:235-249.
- [15]Holbro N, Grunditz A, Oertner TG: Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci U S A 2009, 106:15055-15060.
- [16]Emptage NJ, Reid CA, Fine A: Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001, 29:197-208.
- [17]Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY: Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 1998, 392:936-941.
- [18]Bandtlow CE, Schmidt MF, Hassinger TD, Schwab ME, Kater SB: Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 1993, 259:80-83.
- [19]Khachaturian ZS: Calcium, membranes, aging, and Alzheimer’s disease. introduction and overview. Ann N Y Acad Sci 1989, 568:1-4.
- [20]Bezprozvanny I, Mattson MP: Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 2008, 31:454-463.
- [21]Supnet C, Bezprozvanny I: The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010, 47:183-189.
- [22]Chakroborty S, Stutzmann GE: Calcium channelopathies and Alzheimer’s disease: insight into therapeutic success and failures. Eur J Pharmacol 2013, pii: S0014-2999(13):00883-2. doi:10.1016/j.ejphar.2013.11.012. [Epub ahead of print]. PMID: 24316360
- [23]Popugaeva E, Bezprozvanny I: Can the calcium hypothesis explain synaptic loss in Alzheimer’s disease? Neurodegener Dis 2014, 13:139-141.
- [24]Mattson MP: ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 2010, 3:pe10.
- [25]Stutzmann GE, Mattson MP: Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 2011, 63:700-727.
- [26]Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V: The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 1995, 128:893-904.
- [27]Zalk R, Lehnart SE, Marks AR: Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 2007, 76:367-385.
- [28]Murayama T, Ogawa Y: Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J Biol Chem 1997, 272:24030-24037.
- [29]Chen SR, Leong P, Imredy JP, Bartlett C, Zhang L, MacLennan DH: Single-channel properties of the recombinant skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J 1997, 73:1904-1912.
- [30]Usachev Y, Shmigol A, Pronchuk N, Kostyuk P, Verkhratsky A: Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 1993, 57:845-859.
- [31]Korkotian E, Segal M: Fast confocal imaging of calcium released from stores in dendritic spines. Eur J Neurosci 1998, 10:2076-2084.
- [32]Meissner G: Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 1986, 261:6300-6306.
- [33]Laver DR, Baynes TM, Dulhunty AF: Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol 1997, 156:213-229.
- [34]Laver DR, Owen VJ, Junankar PR, Taske NL, Dulhunty AF, Lamb GD: Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J 1997, 73:1913-1924.
- [35]Snyder HR Jr, Davis CS, Bickerton RK, Halliday RP: 1-[(5-arylfurfurylidene)amino]hydantoins. a new class of muscle relaxants. J Med Chem 1967, 10:807-810.
- [36]Kolb ME, Horne ML, Martz R: Dantrolene in human malignant hyperthermia. Anesthesiology 1982, 56:254-262.
- [37]Fruen BR, Mickelson JR, Louis CF: Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J Biol Chem 1997, 272:26965-26971.
- [38]Zhao F, Li P, Chen SR, Louis CF, Fruen BR: Dantrolene inhibition of ryanodine receptor Ca2+ release channels. molecular mechanism and isoform selectivity. J Biol Chem 2001, 276:13810-13816.
- [39]Paul-Pletzer K, Yamamoto T, Ikemoto N, Jimenez LS, Morimoto H, Williams PG, Ma J, Parness J: Probing a putative dantrolene-binding site on the cardiac ryanodine receptor. Biochem J 2005, 387:905-909.
- [40]Wang R, Zhong X, Meng X, Koop A, Tian X, Jones PP, Fruen BR, Wagenknecht T, Liu Z, Chen SR: Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 2011, 286:12202-12212.
- [41]Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M: Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009, 53:1993-2005.
- [42]Maxwell JT, Domeier TL, Blatter LA: Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol 2012, 302:H953-H963.
- [43]Jung CB, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz KL: Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 2012, 4:180-191.
- [44]Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J: Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 2006, 281:33477-33486.
- [45]Lanner JT, Georgiou DK, Joshi AD, Hamilton SL: Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010, 2:a003996.
- [46]Balshaw DM, Yamaguchi N, Meissner G: Modulation of intracellular calcium-release channels by calmodulin. J Membr Biol 2002, 185:1-8.
- [47]MacMillan D: FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013, 700:181-193.
- [48]Currie S: Cardiac ryanodine receptor phosphorylation by CaM Kinase II: keeping the balance right. Front Biosci (Landmark Ed) 2009, 14:5134-5156.
- [49]Valdivia HH: Modulation of intracellular Ca2+ levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors. Trends Pharmacol Sci 1998, 19:479-482.
- [50]Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR: Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 1997, 272:23389-23397.
- [51]Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR: Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 2011, 14:196-207.
- [52]Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR: Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009, 15:325-330.
- [53]Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR: Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 2008, 105:2198-2202.
- [54]Fauconnier J, Meli AC, Thireau J, Roberge S, Shan J, Sassi Y, Reiken SR, Rauzier JM, Marchand A, Chauvier D, Cassan C, Crozier C, Bideaux P, Lompré AM, Jacotot E, Marks AR, Lacampagne A: Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc Natl Acad Sci U S A 2011, 108:13258-13263.
- [55]Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX, Arancio O, Marks AR: Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 2012, 150:1055-1067.
- [56]Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ: Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008, 59:214-225.
- [57]Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O: Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008, 321:1686-1689.
- [58]Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG: Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005, 280:17294-17300.
- [59]Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE: beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992, 12:376-389.
- [60]Simakova O, Arispe NJ: Early and late cytotoxic effects of external application of the Alzheimer’s Abeta result from the initial formation and function of Abeta ion channels. Biochemistry 2006, 45:5907-5915.
- [61]Simakova O, Arispe NJ: The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. membrane binding is required for Abeta toxicity. J Neurosci 2007, 27:13719-13729.
- [62]Arispe N, Rojas E, Pollard HB: Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 1993, 90:567-571.
- [63]Ferreiro E, Oliveira CR, Pereira C: Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. J Neurosci Res 2004, 76:872-880.
- [64]Niu Y, Su Z, Zhao C, Song B, Zhang X, Zhao N, Shen X, Gong Y: Effect of amyloid beta on capacitive calcium entry in neural 2a cells. Brain Res Bull 2009, 78:152-157.
- [65]Demuro A, Parker I: Cytotoxicity of intracellular abeta42 amyloid oligomers involves Ca2+ release from the endoplasmic reticulum by stimulated production of inositol trisphosphate. J Neurosci 2013, 33:3824-3833.
- [66]Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A: Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010, 66:739-754.
- [67]Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM, Foskett JK: Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP(3) receptor channel gating. Neuron 2008, 58:871-883.
- [68]Ito E, Oka K, Etcheberrigaray R, Nelson TJ, McPhie DL, Tofel-Grehl B, Gibson GE, Alkon DL: Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A 1994, 91:534-538.
- [69]Etcheberrigaray R, Hirashima N, Nee L, Prince J, Govoni S, Racchi M, Tanzi RE, Alkon DL: Calcium responses in fibroblasts from asymptomatic members of Alzheimer’s disease families. Neurobiol Dis 1998, 5:37-45.
- [70]Leissring MA, Parker I, LaFerla FM: Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 1999, 274:32535-32538.
- [71]Stutzmann GE, Caccamo A, LaFerla FM, Parker I: Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci 2004, 24:508-513.
- [72]Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I: Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 2006, 26:5180-5189.
- [73]Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM: SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 2008, 181:1107-1116.
- [74]Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I: Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006, 126:981-993.
- [75]Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C: Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 2009, 13:3358-3369.
- [76]Nelson O, Supnet C, Liu H, Bezprozvanny I: Familial Alzheimer’s disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimers Dis 2010, 21:781-793.
- [77]Nelson O, Tu H, Lei T, Bentahir M, de Strooper B, Bezprozvanny I: Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 2007, 117:1230-1239.
- [78]Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I: Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010, 30:8566-8580.
- [79]Nelson O, Supnet C, Tolia A, Horre K, De Strooper B, Bezprozvanny I: Mutagenesis mapping of the presenilin 1 calcium leak conductance pore. J Biol Chem 2011, 286:22339-22347.
- [80]Shilling D, Mak DO, Kang DE, Foskett JK: Lack of evidence for presenilins as endoplasmic reticulum Ca2+ leak channels. J Biol Chem 2012, 287(14):10933-10944.
- [81]Bezprozvanny I, Supnet C, Sun S, Zhang H, De Strooper B: Response to Shilling et al. J Biol Chem 2012, 287:20469. 10.1074/jbc.M111.300491. author reply 20470
- [82]Das HK, Tchedre K, Mueller B: Repression of transcription of presenilin-1 inhibits gamma-secretase independent ER Ca(2)(+) leak that is impaired by FAD mutations. J Neurochem 2012, 122:487-500.
- [83]Bandara S, Malmersjo S, Meyer T: Regulators of calcium homeostasis identified by inference of kinetic model parameters from live single cells perturbed by siRNA. Sci Signal 2013, 6:ra56.
- [84]Furukawa K, Barger SW, Blalock EM, Mattson MP: Activation of K + channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996, 379:74-78.
- [85]Cao X, Sudhof TC: A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 2001, 293:115-120.
- [86]Leissring MA, Murphy MP, Mead TR, Akbari Y, Sugarman MC, Jannatipour M, Anliker B, Müller U, Saftig P, De Strooper B, Wolfe MS, Golde TE, LaFerla FM: A physiologic signaling role for the gamma -secretase-derived intracellular fragment of APP. Proc Natl Acad Sci U S A 2002, 99:4697-4702.
- [87]Pardossi-Piquard R, Checler F: The physiology of the beta-amyloid precursor protein intracellular domain AICD. J Neurochem 2012, 120(Suppl 1):109-124.
- [88]Raychaudhuri M, Mukhopadhyay D: AICD Overexpression in neuro 2A cells regulates expression of PTCH1 and TRPC5. Int J Alzheimers Dis 2011, pii: 239453. doi:10.4061/2011/239453
- [89]Chatzistavraki M, Kyratzi E, Fotinopoulou A, Papazafiri P, Efthimiopoulos S: Downregulation of AbetaPP enhances both calcium content of endoplasmic reticulum and acidic stores and the dynamics of store operated calcium channel activity. J Alzheimers Dis 2013, 34:407-415.
- [90]Gibson GE, Vestling M, Zhang H, Szolosi S, Alkon D, Lannfelt L, Gandy S, Cowburn RF: Abnormalities in Alzheimer’s disease fibroblasts bearing the APP670/671 mutation. Neurobiol Aging 1997, 18:573-580.
- [91]Supnet C, Grant J, Kong H, Westaway D, Mayne M: Amyloid-beta-(1–42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006, 281:38440-38447.
- [92]Oulès B, Del Prete D, Greco B, Zhang X, Lauritzen I, Sevalle J, Moreno S, Paterlini-Bréchot P, Trebak M, Checler F, Benfenati F, Chami M: Ryanodine receptor blockade reduces amyloid-beta load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012, 32:11820-11834.
- [93]Popescu BO, Cedazo-Minguez A, Benedikz E, Nishimura T, Winblad B, Ankarcrona M, Cowburn RF: Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction. J Biol Chem 2004, 279:6455-6464.
- [94]Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM: Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 2005, 94:1711-1718.
- [95]Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP: Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000, 275:18195-18200.
- [96]Lee SY, Hwang DY, Kim YK, Lee JW, Shin IC, Oh KW, Lee MK, Lim JS, Yoon DY, Hwang SJ, Hong JT: PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase-3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J 2006, 20:151-153.
- [97]Wu B, Yamaguchi H, Lai FA, Shen J: Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A 2013, 110:15091-15096.
- [98]Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ III, Kandel ER, Duff K, Kirkwood A, Shen J: Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 2004, 42:23-36.
- [99]Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J: Presenilins are essential for regulating neurotransmitter release. Nature 2009, 460:632-636.
- [100]Chakroborty S, Goussakov I, Miller MB, Stutzmann GE: Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009, 29:9458-9470.
- [101]Kipanyula MJ, Contreras L, Zampese E, Lazzari C, Wong AK, Pizzo P, Fasolato C, Pozzan T: Ca2+ dysregulation in neurons from transgenic mice expressing mutant presenilin 2. Aging Cell 2012, 11:885-893.
- [102]Goussakov I, Miller MB, Stutzmann GE: NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer's disease mice. J Neurosci 2010, 30:12128-12137.
- [103]Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A: Increased intraneuronal resting [Ca(2+)] in adult Alzheimer’s disease mice. J Neurochem 2008, 105(1):262-271.
- [104]Rojas G, Cardenas AM, Fernandez-Olivares P, Shimahara T, Segura-Aguilar J, Caviedes R, Caviedes P: Effect of the knockdown of amyloid precursor protein on intracellular calcium increases in a neuronal cell line derived from the cerebral cortex of a trisomy 16 mouse. Exp Neurol 2008, 209:234-242.
- [105]Paula-Lima AC, Hidalgo C: Amyloid beta-peptide oligomers, ryanodine receptor-mediated Ca(2+) release, and Wnt-5a/Ca(2+) signaling: opposing roles in neuronal mitochondrial dynamics? Front Cell Neurosci 2013, 7:120.
- [106]Shtifman A, Ward CW, Laver DR, Bannister ML, Lopez JR, Kitazawa M, LaFerla FM, Ikemoto N, Querfurth HW: Amyloid-beta protein impairs Ca2+ release and contractility in skeletal muscle. Neurobiol Aging 2010, 31:2080-2090.
- [107]Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R, Sorrentino V, O’Neill C: Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999, 92:499-513.
- [108]Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE: Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2012, 33:1001-1006.
- [109]Antonell A, Lladó A, Altirriba J, Botta-Orfila T, Balasa M, Fernández M, Ferrer I, Sánchez-Valle R, Molinuevo JL: A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer’s disease. Neurobiol Aging 2013, 34:1772-1778.
- [110]Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F: Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Ann N Y Acad Sci 2007, 1097:265-277.
- [111]Liu J, Supnet C, Sun S, Zhang H, Good L, Popugaeva E, Bezprozvanny I: The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin) 2014., 8(3) [Epub ahead of print]
- [112]Paula-Lima AC, Adasme T, SanMartin C, Sebollela A, Hetz C, Carrasco MA, Ferreira ST, Hidalgo C: Amyloid beta-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 2011, 14:1209-1223.
- [113]Chami L, Checler F: BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and beta-amyloid production in Alzheimer’s disease. Mol Neurodegener 2012, 7:52. BioMed Central Full Text
- [114]Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P: The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 2011, 20:2144-2160.
- [115]Takeda T, Asahi M, Yamaguchi O, Hikoso S, Nakayama H, Kusakari Y, Kawai M, Hongo K, Higuchi Y, Kashiwase K, Watanabe T, Taniike M, Nakai A, Nishida K, Kurihara S, Donoviel DB, Bernstein A, Tomita T, Iwatsubo T, Hori M, Otsu K: Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling. FASEB J 2005, 19:2069-2071.
- [116]Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P: The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008, 44:507-518.
- [117]Rybalchenko V, Hwang SY, Rybalchenko N, Koulen P: The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 2008, 40:84-97.
- [118]Pack-Chung E, Meyers MB, Pettingell WP, Moir RD, Brownawell AM, Cheng I, Tanzi RE, Kim TW: Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J Biol Chem 2000, 275:14440-14445.
- [119]Bull R, Finkelstein JP, Galvez J, Sanchez G, Donoso P, Behrens MI, Hidalgo C: Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex. J Neurosci 2008, 28:9463-9472.
- [120]Gant JC, Chen KC, Norris CM, Kadish I, Thibault O, Blalock EM, Porter NM, Landfield PW: Disrupting function of FK506-binding protein 1b/12.6 induces the Ca(2) + −dysregulation aging phenotype in hippocampal neurons. J Neurosci 2011, 31:1693-1703.
- [121]Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI: Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J 2004, 18:1427-1429.
- [122]Emerit J, Edeas M, Bricaire F: Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004, 58:39-46.
- [123]Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443:787-795.
- [124]Su Y, Ryder J, Ni B: Inhibition of Abeta production and APP maturation by a specific PKA inhibitor. FEBS Lett 2003, 546:407-410.
- [125]Marambaud P, Chevallier N, Ancolio K, Checler F: Post-transcriptional contribution of a cAMP-dependent pathway to the formation of alpha- and beta/gamma-secretases-derived products of beta APP maturation in human cells expressing wild-type and Swedish mutated beta APP. Mol Med 1998, 4:715-723.
- [126]Marambaud P, Ancolio K, Alves da Costa C, Checler F: Effect of protein kinase A inhibitors on the production of Abeta40 and Abeta42 by human cells expressing normal and Alzheimer’s disease-linked mutated betaAPP and presenilin 1. Br J Pharmacol 1999, 126:1186-1190.
- [127]Ueda K, Yagami T, Kageyama H, Kawasaki K: Protein kinase inhibitor attenuates apoptotic cell death induced by amyloid beta protein in culture of the rat cerebral cortex. Neurosci Lett 1996, 203:175-178.
- [128]Eftekharzadeh B, Ramin M, Khodagholi F, Moradi S, Tabrizian K, Sharif R, Azami K, Beyer C, Sharifzadeh M: Inhibition of PKA attenuates memory deficits induced by beta-amyloid (1–42), and decreases oxidative stress and NF-kappaB transcription factors. Behav Brain Res 2012, 226:301-308.
- [129]Hui L, Hong Y, Jingjing Z, Yuan H, Qi C, Nong Z: HGF suppresses high glucose-mediated oxidative stress in mesangial cells by activation of PKG and inhibition of PKA. Free Radic Biol Med 2010, 49:467-473.
- [130]Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW: Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003, 23:3807-3819.
- [131]Buxbaum JD, Ruefli AA, Parker CA, Cypess AM, Greengard P: Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc Natl Acad Sci U S A 1994, 91:4489-4493.
- [132]Querfurth HW, Selkoe DJ: Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 1994, 33:4550-4561.
- [133]Querfurth HW, Jiang J, Geiger JD, Selkoe DJ: Caffeine stimulates amyloid beta-peptide release from beta-amyloid precursor protein-transfected HEK293 cells. J Neurochem 1997, 69:1580-1591.
- [134]Peng J, Liang G, Inan S, Wu Z, Joseph DJ, Meng Q, Peng Y, Eckenhoff MF, Wei H: Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice. Neurosci Lett 2012, 516:274-279.
- [135]Chakroborty S, Briggs C, Miller MB, Goussakov I, Schneider C, Kim J, Wicks J, Richardson JC, Conklin V, Cameransi BG, Stutzmann GE: Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer’s disease. PLoS One 2012, 7:e52056.
- [136]Popescu BO, Oprica M, Sajin M, Stanciu CL, Bajenaru O, Predescu A, Vidulescu C, Popescu LM: Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. J Cell Mol Med 2002, 6:555-569.
- [137]Wei H, Perry DC: Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem 1996, 67:2390-2398.
- [138]Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H: Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology 2002, 96:705-710.
- [139]Chen X, Wu J, Lvovskaya S, Herndon E, Supnet C, Bezprozvanny I: Dantrolene is neuroprotective in Huntington’s disease transgenic mouse model. Mol Neurodegener 2011, 6:81. BioMed Central Full Text
- [140]Suzuki M, Nagai Y, Wada K, Koike T: Calcium leak through ryanodine receptor is involved in neuronal death induced by mutant huntingtin. Biochem Biophys Res Commun 2012, 429:18-23.
- [141]Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008, 28:12713-12724.
- [142]Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 2009, 29:9148-9162.
- [143]Frandsen A, Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 1991, 56:1075-1078.
- [144]Bouchelouche P, Belhage B, Frandsen A, Drejer J, Schousboe A: Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res 1989, 76:281-291.
- [145]Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP: Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997, 17:4212-4222.
- [146]Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M: The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J Biol Chem 1999, 274:7975-7981.
- [147]Supnet C, Noonan C, Richard K, Bradley J, Mayne M: Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer’s disease. J Neurochem 2010, 112:356-365.
- [148]Ghosh A, Greenberg ME: Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 1995, 268:239-247.
- [149]Trinchese F, Fa M, Liu S, Zhang H, Hidalgo A, Schmidt SD, Yamaguchi H, Yoshii N, Mathews PM, Nixon RA, Arancio O: Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 2008, 118:2796-2807.
- [150]Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA: Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 1997, 763:145-158.
- [151]Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC: Ca2 + −induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999, 284:339-343.
- [152]Dineley KT, Hogan D, Zhang WR, Taglialatela G: Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 2007, 88:217-224.
- [153]Cardoso SM, Oliveira CR: The role of calcineurin in amyloid-beta-peptides-mediated cell death. Brain Res 2005, 1050:1-7.
- [154]Malenka RC, Bear MF: LTP and LTD: an embarrassment of riches. Neuron 2004, 44:5-21.
- [155]Bardo S, Cavazzini MG, Emptage N: The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci 2006, 27:78-84.
- [156]Bouchard R, Pattarini R, Geiger JD: Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 2003, 69:391-418.
- [157]Zucker RS, Regehr WG: Short-term synaptic plasticity. Annu Rev Physiol 2002, 64:355-405.
- [158]Yuste R, Majewska A, Holthoff K: From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 2000, 3:653-659.
- [159]Raymond CR, Redman SJ: Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 2006, 570:97-111.
- [160]Obenaus A, Mody I, Baimbridge KG: Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices. Neurosci Lett 1989, 98:172-178.
- [161]Harvey J, Collingridge GL: Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 1992, 139:197-200.
- [162]Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K: Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 2000, 408:584-588.
- [163]Fitzjohn SM, Collingridge GL: Calcium stores and synaptic plasticity. Cell Calcium 2002, 32:405-411.
- [164]Shimuta M, Yoshikawa M, Fukaya M, Watanabe M, Takeshima H, Manabe T: Postsynaptic modulation of AMPA receptor-mediated synaptic responses and LTP by the type 3 ryanodine receptor. Mol Cell Neurosci 2001, 17:921-930.
- [165]Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, Tanaka K, Itohara S, Mikoshiba K: Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 1999, 24:701-713.
- [166]Stutzmann GE, LaFerla FM, Parker I: Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J Neurosci 2003, 23:758-765.
- [167]Chakroborty S, Stutzmann GE: Early calcium dysregulation in Alzheimer’s disease: setting the stage for synaptic dysfunction. Sci China Life Sci 2011, 54:752-762.
- [168]Chakroborty S, Kim J, Schneider C, Jacobson C, Molgo J, Stutzmann GE: Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice. J Neurosci 2012, 32:8341-8353.
- [169]Ziviani E, Lippi G, Bano D, Munarriz E, Guiducci S, Zoli M, Young KW, Nicotera P: Ryanodine receptor-2 upregulation and nicotine-mediated plasticity. EMBO J 2011, 30:194-204.
- [170]Zhao W, Meiri N, Xu H, Cavallaro S, Quattrone A, Zhang L, Alkon DL: Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus. FASEB J 2000, 14:290-300.
- [171]Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K, Takeshima H, Miyakawa T: Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 2009, 3:3.
- [172]Alkon DL, Nelson TJ, Zhao W, Cavallaro S: Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K + channel cascade. Trends Neurosci 1998, 21:529-537.
- [173]Elias GM, Elias LA, Apostolides PF, Kriegstein AR, Nicoll RA: Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci U S A 2008, 105:20953-20958.
- [174]Tollefson GD: Short-term effects of the calcium channel blocker nimodipine (Bay-e-9736) in the management of primary degenerative dementia. Biol Psychiatry 1990, 27:1133-1142.
- [175]Bullock R: Efficacy and safety of memantine in moderate-to-severe Alzheimer disease: the evidence to date. Alzheimer Dis Assoc Disord 2006, 20:23-29.