期刊论文详细信息
Neural Development
Dynamic regulation of mRNA decay during neural development
Michael D Cleary1  David H Ardell1  Crystal D Bakhaj1  Marie B True1  Maxine C Umeh-Garcia1  Dana A Burow1 
[1] Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA
关键词: Pumilio;    Neurogenesis;    Transcriptome;    mRNA decay;    Gene expression;   
Others  :  1210967
DOI  :  10.1186/s13064-015-0038-6
 received in 2015-02-24, accepted in 2015-04-07,  发布年份 2015
PDF
【 摘 要 】

Background

Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue. Such information should reveal the degree to which mRNA decay contributes to differential gene expression and provide a foundation for identifying regulatory mechanisms that affect neural mRNA decay.

Results

We developed a technique that allows genome-wide mRNA decay measurements in intact Drosophila embryos, across all tissues and specifically in the nervous system. Our approach revealed neural-specific decay kinetics, including stabilization of transcripts encoding regulators of axonogenesis and destabilization of transcripts encoding ribosomal proteins and histones. We also identified correlations between mRNA stability and physiologic properties of mRNAs; mRNAs that are predicted to be translated within axon growth cones or dendrites have long half-lives while mRNAs encoding transcription factors that regulate neurogenesis have short half-lives. A search for candidate cis-regulatory elements identified enrichment of the Pumilio recognition element (PRE) in mRNAs encoding regulators of neurogenesis. We found that decreased expression of the RNA-binding protein Pumilio stabilized predicted neural mRNA targets and that a PRE is necessary to trigger reporter-transcript decay in the nervous system.

Conclusions

We found that differential mRNA decay contributes to the relative abundance of transcripts involved in cell-fate decisions, axonogenesis, and other critical events during Drosophila neural development. Neural-specific decay kinetics and the functional specificity of mRNA decay suggest the existence of a dynamic neurodevelopmental mRNA decay network. We found that Pumilio is one component of this network, revealing a novel function for this RNA-binding protein.

【 授权许可】

   
2015 Burow et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150608081539980.pdf 1675KB PDF download
Figure 6. 39KB Image download
Figure 5. 85KB Image download
Figure 4. 45KB Image download
Figure 3. 100KB Image download
Figure 2. 102KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Guillemot F: Spatial and temporal specification of neural fates by transcription factor codes. Development. 2007, 134:3771-80.
  • [2]Polleux F, Ince-Dunn G, Ghosh A: Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci. 2007, 8:331-40.
  • [3]Alonso CR: A complex ‘mRNA degradation code’ controls gene expression during animal development. Trends Genet. 2012, 28:78-88.
  • [4]Schoenberg DR, Maquat LE: Regulation of cytoplasmic mRNA decay. Nat Rev Genet. 2012, 13:246-59.
  • [5]Perrone-Bizzozero N, Bolognani F: Role of HuD and other RNA-binding proteins in neural development and plasticity. J Neurosci Res. 2002, 68:121-6.
  • [6]Colak D, Ji SJ, Porse BT, Jaffrey SR: Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell. 2013, 153:1252-65.
  • [7]Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, Hayakama Y, et al.: The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci U S A. 2005, 102:4625-30.
  • [8]Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, et al.: Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep. 2014, 6:748-64.
  • [9]Soustelle L, Roy N, Ragone G, Giangrande A: Control of gcm RNA stability is necessary for proper glial cell-fate acquisition. Mol Cell Neurosci. 2008, 37:657-62.
  • [10]Thomsen S, Anders S, Janga SC, Huber W, Alonso CR: Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol. 2010, 11:R93. BioMed Central Full Text
  • [11]Friedel CC, Dölken L, Ruzsics Z, Koszinowski UH, Zimmer R: Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 2009, 37:e115.
  • [12]Miller MR, Robinson KJ, Cleary MD, Doe CQ: TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat Methods. 2009, 6:439-41.
  • [13]Munchel SE, Shultzaberger RK, Takizawa N, Weis K: Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol Biol Cell. 2011, 22:2787-95.
  • [14]Goodarzi H, Najafabadi HS, Oikonomou P, Greco TM, Fish L, Salavati R, et al.: Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature. 2012, 485:264-8.
  • [15]Galicia-Vázquez G, Cencic R, Robert F, Agenor AQ, Pelletier J: A cellular response linking eIF4AI activity to eIF4AII transcription. RNA. 2012, 18:1373-84.
  • [16]Dani C, Blanchard JM, Piechaczyk M, El Sabouty S, Marty L, Jeanteur P: Extreme instability of myc mRNA in normal and transformed human cells. Proc Natl Acad Sci U S A. 1984, 81:7046-50.
  • [17]Miller C, Schwalb B, Maier K, Schulz D, Dumcke S, Zacher B, et al.: Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol. 2011, 7:458.
  • [18]Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, et al.: Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 2012, 22:947-56.
  • [19]Manansala MC, Min S, Cleary MD: The Drosophila SERTAD protein Taranis determines lineage-specific neural progenitor proliferation patterns. Dev Biol. 2013, 376:150-62.
  • [20]Lai SL, Miller MR, Robinson KJ, Doe CQ: The Snail family member Worniu is continuously required in neuroblasts to prevent Elav-induced premature differentiation. Dev Cell. 2012, 23:849-57.
  • [21]Brody T. The Interactive Fly. www.sdbonline.org/sites/fly/aimorph/cns.htm
  • [22]Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, et al.: Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci. 2010, 30:15464-78.
  • [23]Zhong J, Zhang T, Bloch LM: Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci. 2006, 7:17. BioMed Central Full Text
  • [24]Li X, Chen Z, Desplan C: Temporal patterning of neural progenitors in Drosophila. Curr Top Dev Biol. 2013, 105:69-96.
  • [25]Monastirioti M, Giagtzoglou N, Koumbanakis KA, Zacharioudaki E, Deligiannaki M, Wech I, et al.: Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis. Development 2010, 137:191-201.
  • [26]Doe CQ: Neural stem cells: balancing self-renewal with differentiation. Development. 2008, 135:1575-87.
  • [27]Ashraf SI, McLoon AL, Sclarsic SM, Kunes S: Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 2006, 124:191-205.
  • [28]Farris S, Lewandowski G, Cox CD, Steward O: Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J Neurosci. 2014, 34:4481-93.
  • [29]Huang F, Chotiner JK, Steward O: The mRNA for elongation factor 1alpha is localized in dendrites and translated in response to treatments that induce long-term depression. J Neurosci. 2005, 25:7199-209.
  • [30]Rolls MM, Satoh D, Clyne PJ, Henner AL, Uemura T, Doe CQ: Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev. 2007, 2:7. BioMed Central Full Text
  • [31]Chen K, Featherstone DE: Pre and postsynaptic roles for Drosophila CASK. Mol Cell Neurosci. 2011, 48:171-82.
  • [32]Stevens RJ, Akbergenova Y, Jorquera RA, Littleton JT: Abnormal synaptic vesicle biogenesis in Drosophila synaptogyrin mutants. J Neurosci. 2012, 32:18054-67.
  • [33]Cairrao F, Halees AS, Khabar KS, Morello D, Vanzo N: AU-rich elements regulate Drosophila gene expression. Mol Cell Biol. 2009, 29:2636-43.
  • [34]Sun K, Westholm JO, Tsurudome K, Hagen JW, Lu Y, Kohwi M, et al.: Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet. 2012., 8Article ID e1002515
  • [35]Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D: Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2006, 103:4487-92.
  • [36]Menon KP, Sanyal S, Habara Y, Sanchez R, Wharton RP, Ramaswami M, et al.: The translational repressor Pumilio regulates presynaptic morphology and controls postsynaptic accumulation of translation factor eIF-4E. Neuron. 2004, 44:663-76.
  • [37]Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, et al.: The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol. 2003, 13:286-96.
  • [38]Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, et al.: A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods. 2011, 8:405-7.
  • [39]Chen G, Li W, Zhang QS, Regulski M, Sinha N, Barditch J, et al.: Identification of synaptic targets of Drosophila Pumilio. PLoS Comput Biol. 2008., 4Article ID e1000026
  • [40]Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, di Penta A, et al.: A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci. 2007, 10:578-87.
  • [41]Li L, Vaessin H: Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev. 2000, 14:147-51.
  • [42]Neff AT, Lee JY, Wilusz J, Tian B, Wilusz CJ: Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells. Genome Res. 2012, 22:1457-67.
  • [43]Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, Uemura T: Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron. 1997, 19:77-89.
  • [44]Ahmed Y, Nouri A, Wieschaus E: Drosophila Apc1 and Apc2 regulate wingless transduction throughout development. Development. 2002, 129:1751-62.
  • [45]Kuchinke U, Grawe F, Knust E: Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol. 1998, 8:1357-65.
  • [46]Rolls MM, Doe CQ: Baz, Par-6 and aPKC are not required for axon or dendrite specification in Drosophila. Nat Neurosci. 2004, 7:1293-5.
  • [47]Staples J, Broadie K: The cell polarity scaffold lethal giant larvae regulates synapse morphology and function. J Cell Sci. 2013, 126:1992-2003.
  • [48]Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO: Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A. 2002, 99:5860-5.
  • [49]Jones BW, Fetter RD, Tear G, Goodman CS: glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 1995, 82:1013-23.
  • [50]Skeath JB, Carroll SB: Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development. 1992, 114:939-46.
  • [51]Cleary MD, Doe CQ: Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev. 2006, 20:429-34.
  • [52]Kim YS, Fritz JL, Seneviratne AK, VanBerkum MF: Constitutively active myosin light chain kinase alters axon guidance decisions in Drosophila embryos. Dev Biol. 2002, 249:367-81.
  • [53]Long AA, Kim E, Leung HT, Woodruff E 3rd, An L, Doerge RW, et al.: Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein. J Neurosci. 2008, 28:3668-82.
  • [54]Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC: The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA. 2014, 20:1298-319.
  • [55]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001, 98:5116-21.
  • [56]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4:44-57.
  • [57]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37:1-13.
  文献评价指标  
  下载次数:76次 浏览次数:29次