期刊论文详细信息
Particle and Fibre Toxicology
Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna
Margo Pybus2  Silvia Bokorová3  Gabriel Minárik1  Jan Štefka5  Ivica Králová-Hromadová4  Eva Bazsalovicsová4 
[1] Geneton Ltd., Ilkovičova 3, Bratislava, 84104, Slovakia;Alberta Fish and Wildlife Division and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada;Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, Bratislava, 84215, Slovakia;Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, 04001, Slovakia;Biology Centre AS CR, Institute of Parasitology and Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
关键词: Spatial distribution;    Nicotinamide dehydrogenase;    Cytochrome c oxidase;    Mitochondrial DNA;    Fasciolidae;    Trematoda;   
Others  :  1224717
DOI  :  10.1186/s13071-015-0895-1
 received in 2015-04-16, accepted in 2015-05-11,  发布年份 2015
【 摘 要 】

Background

Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time.

Methods

Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA).

Results

Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations.

Conclusion

The genetic makeup of the parasite’s populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.

【 授权许可】

   
2015 Bazsalovicsová et al.

附件列表
Files Size Format View
Fig. 3. 59KB Image download
Fig. 2. 34KB Image download
Fig. 1. 58KB Image download
Fig. 3. 59KB Image download
Fig. 2. 34KB Image download
Fig. 1. 58KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Prugnolle F, Liua H, de Meeu T, Ballouxa F. Population genetics of complex life-cycle parasites: an illustration with trematodes. Int J Parasitol. 2005; 35:255-63.
  • [2]Štefka J, Hypša V, Scholz T. Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda). Mol Ecol. 2009; 18:1187-206.
  • [3]Poulin R, Krasnov BR, Mouillot D, Thieltges DW. The comparative ecology and biogeography of parasites. Philos Trans R Soc Lond B Biol Sci. 2011; 366:2379-90.
  • [4]Renaud F, Clayton D, de Meeüs T. Biodiversity and evolution in host-parasite associations. Biodivers Conserv. 1996; 5:963-74.
  • [5]Salzet M, Capron A, Stefano GB. Molecular crosstalk in host-parasite relationships: schistosome and leech host interactions. Parasitol Today. 2000; 16:536-40.
  • [6]Pybus MJ. Liver flukes. Parasitic Diseases of Wild Mammals. 2nd ed. Samuel WM, Pybus MJ, Kocan AA, editors. Iowa State University Press, Ames, Iowa; 2001.
  • [7]Králová-Hromadová I, Bazsalovicsová E, Demiaszkiewicz A. Molecular characterization of Fascioloides magna (Trematoda: Fasciolidae) from south-western Poland based on mitochondrial markers. Acta Parasitol. 2015; 60:544-7.
  • [8]Marinković D, Kukolj V, Aleksić-Kovačević S, Jovanović M, Knežević M. The role of hepatic myofibroblasts in liver cirrhosis in fallow deer (Dama dama) naturally infected with giant liver fluke (Fascioloides magna). BMC Vet Res. 2013; 9:45. BioMed Central Full Text
  • [9]Erhardová-Kotrlá B. The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; 1971.
  • [10]Rajský D, Patus A, Bukovjan K. Prvý nález Fascioloides magna (Bassi, 1875) na Slovensku. Slovenský veterinárny časopis. 1994; 19:29-30.
  • [11]Faltýnková A, Horáčková E, Hirtová L, Novobilský A, Modrý D, Scholz T. Is Radix peregra a new intermediate host of Fascioloides magna (Trematoda) in Europe? Field and experimental evidence. Acta Parasitol. 2006; 51:87-90.
  • [12]Rajský D, Čorba J, Várady M, Špakulová M, Cabadaj R. Control of fascioloidosis (Fascioloides magna Bassi, 1875) in red deer and roe deer. Helminthologia. 2002; 39:67-70.
  • [13]Králová-Hromadová I, Bazsalovicsová E, Štefka J, Špakulová M, Vávrová S, Szemes T et al.. Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int J Parasitol. 2011; 41:373-83.
  • [14]Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková Ľ, Novobilský A, Beck R et al.. Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol. 2008; 94:58-67.
  • [15]Werle E, Schneider C, Renner M, Volker M, Fiehn W. Convenient singlestep, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994; 22:4354-5.
  • [16]Garey JR, Wolstenholme DR. Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNA (serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 1989; 28:374-87.
  • [17]Ohama T, Osawa S, Watanabe K, Jukes TH. Evolution of the mitochondrial genetic code. IV. AAA as an asparagine codon in some animal mitochondria. J Mol Evol. 1990; 30:329-32.
  • [18]Gouy M, Guindon S, Gascuel O. SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010; 27:221-4.
  • [19]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010; 59:307-21.
  • [20]Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S et al.. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61:539-42.
  • [21]Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012; 29:1695-701.
  • [22]Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000; 9:1657-9.
  • [23]Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010; 10:564-7.
  • [24]Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25:1451-2.
  • [25]Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics. 1997; 147:915-25.
  • [26]Dobson A, Carper R. Global Warming and Potential changes in Host-Parasite and Disease-Vector Relationships. In: Global warming and biodiversity. Peters RL, Lovejoy TE, editors. Yale University Press, New Haven, CT; 1992: p.201-17.
  • [27]van Schaik J, Kerth G, Bruyndonckx N, Christe P. The effect of host social system on parasite population genetic structure: comparative population genetics of two ectoparasitic mites and their bat hosts. BMC Evol Biol. 2014; 14:18. BioMed Central Full Text
  • [28]Roth JA, Laerm J. A late Pleistocene vertebrate assemblage from Edisto Island. SC Brimleyana. 1980; 3:1-29.
  • [29]Noble RE. Mississippi deer herd: past and present. Mississippi Game and Fish. 1966; 29:14-5.
  • [30]Ellsworth DL, Honeycutt RL, Silvy NJ, Bickham JW, Klimstra WD. Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from the Southeastern United States. Evolution. 1994; 48:122-36.
  • [31]Burns JA. Mammalian faunal dynamics in Late Pleistocene Alberta. Canada Quatern Int. 2010; 217:37-42.
  • [32]Pybus MJ, Butterworth EW, Woodes JG. An expanding population of giant liver fluke (Fascioloides magna) in elk (Cervus canadensis) and other ungulates in Canada. J Wildl Dis. 2015; 51:431-5.
  • [33]Cullingham CI, Merrill EH, Pybus MJ, Bollinger TK, Wilson GA, Coltman DW. Broad and fine-scale analysis of white-tailed deer populations: estimating the relative risk of chronic wasting disease spread. Evol Appl. 2011; 4:116-31.
  • [34]Latch EK, Heffelfinger JR, Fike JA, Rhodes OE. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): cryptic glacial refugia and postglacial recolonization. Mol Ecol. 2009; 18:1730-45.
  • [35]McDevitt AD, Mariani S, Hebblewhite M, Decesare NJ, Morgantini L, Seip D et al.. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol Ecol. 2009; 18:665-79.
  • [36]Kurtén B, Anderson E. Pleistocene mammals of North America. Columbia University Press, New York; 1980.
  • [37]Cringan AT. History, food habits and range requirements of the woodland caribou of continental North America. T N Am Wildl Nat Res. 1957; 22:485-501.
  • [38]Heinselman ML. Fire in the Virgin Forests of the Boundary Waters Canoe Area. Minnesota Quaternary Res. 1973; 3:329-82.
  • [39]Churcher CS, Parmalee PW, Bell GL, Lamb JP. Caribou from the late Pleistocene of northwestern Alabama. Can J Zool. 1989; 67:1210-6.
  • [40]Banfield AWF. The mammals of Canada. University of Toronto Press, Toronto; 1974.
  • [41]Bryant LD, Maser C. Classification and distribution. In: Elk of North America. Thomas JW, Toweill DE, editors. Stackpole Books, Harrisburg: PA; 1982: p.1-59.
  • [42]Leo S, Samuel WM, Pybus MJ, Sperling FD. Origin of Dermacentor albipictus (Acari: Ixodidae) on elk in the Yukon. Canada J Wildl Dis. 2014; 50:544-51.
  • [43]Minárik G, Bazsalovicsová E, Zvijáková Ľ, Štefka J, Pálková L, Králová-Hromadová I. Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next-generation sequencing approach. Mol Biochem Parasitol. 2014; 195:30-3.
  文献评价指标  
  下载次数:41次 浏览次数:32次