期刊论文详细信息
Stem Cell Research & Therapy
Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo
Laoise M. McNamara3  Robert E. Guldberg1  Hazel Y. Stevens1  Ashley B. Allen2  Fiona E. Freeman3 
[1] George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta 30332, GA, USA;Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta 30332, GA, USA;Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
关键词: Cell viability;    Osteogenesis;    Vasculogenesis;    Mesenchymal cells;    Endothelial cells;    Endochondral ossification;    Tissue engineering;   
Others  :  1233712
DOI  :  10.1186/s13287-015-0210-2
 received in 2015-05-12, accepted in 2015-10-21,  发布年份 2015
【 摘 要 】

Introduction

During endochondral ossification, both the production of a cartilage template and the subsequent vascularisation of that template are essential precursors to bone tissue formation. Recent studies have found the application of both chondrogenic and vascular priming of mesenchymal stem cells (MSCs) enhanced the mineralisation potential of MSCs in vitro whilst also allowing for immature vessel formation. However, the in vivo viability, vascularisation and mineralisation potential of MSC aggregates that have been pre-conditioned in vitro by a combination of chondrogenic and vascular priming, has yet to be established. In this study, we test the hypothesis that a tissue regeneration approach that incorporates both chondrogenic priming of MSCs, to first form a cartilage template, and subsequent pre-vascularisation of the cartilage constructs, by co-culture with human umbilical vein endothelial cells (HUVECs) in vitro, will improve vessel infiltration and thus mineral formation once implanted in vivo.

Methods

Human MSCs were chondrogenically primed for 21 days, after which they were co-cultured with MSCs and HUVECs and cultured in endothelial growth medium for another 21 days. These aggregates were then implanted subcutaneously in nude rats for 4 weeks. We used a combination of bioluminescent imaging, microcomputed tomography, histology (Masson’s trichrome and Alizarin Red) and immunohistochemistry (CD31, CD146, and α-smooth actin) to assess the vascularisation and mineralisation potential of these MSC aggregates in vivo.

Results

Pre-vascularised cartilaginous aggregates were found to have mature endogenous vessels (indicated by α-smooth muscle actin walls and erythrocytes) after 4 weeks subcutaneous implantation, and also viable human MSCs (detected by bioluminescent imaging) 21 days after subcutaneous implantation. In contrast, aggregates that were not pre-vascularised had no vessels within the aggregate interior and human MSCs did not remain viable beyond 14 days. Interestingly, the pre-vascularised cartilaginous aggregates were also the only group to have mineralised nodules within the cellular aggregates, whereas mineralisation occurred in the alginate surrounding the aggregates for all other groups.

Conclusions

Taken together these results indicate that a combined chondrogenic priming and pre-vascularisation approach for in vitro culture of MSC aggregates shows enhanced vessel formation and increased mineralisation within the cellular aggregate when implanted subcutaneously in vivo.

【 授权许可】

   
2015 Freeman et al.

附件列表
Files Size Format View
Fig. 10. 140KB Image download
Fig. 9. 155KB Image download
Fig. 8. 153KB Image download
Fig. 7. 46KB Image download
Fig. 6. 136KB Image download
Fig. 5. 121KB Image download
Fig. 4. 52KB Image download
Fig. 3. 147KB Image download
Fig. 2. 175KB Image download
Fig. 1. 100KB Image download
Fig. 10. 140KB Image download
Fig. 9. 155KB Image download
Fig. 8. 153KB Image download
Fig. 7. 46KB Image download
Fig. 6. 136KB Image download
Fig. 5. 121KB Image download
Fig. 4. 52KB Image download
Fig. 3. 147KB Image download
Fig. 2. 175KB Image download
Fig. 1. 100KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Verbruggen SW, Vaughan TJ, McNamara LM: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 2012, 9(75):2735-44.
  • [2]Dawson JI, Oreffo RO: Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 2008, 473(2):124-31.
  • [3]Cancedda R, Giannoni P, Mastrogiacomo M: A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 2007, 28(29):4240-50.
  • [4]Rose FR, Oreffo RO: Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun 2002, 292(1):1-7.
  • [5]Bruder SP, Kraus KH, Goldberg VM, Kadiyala S: The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998, 80(7):985-96.
  • [6]Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005, 26(23):4817-27.
  • [7]Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 2006, 27(6):905-16.
  • [8]Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 1999, 47(3):324-35.
  • [9]Uemura T, Dong J, Wang Y, Kojima H, Saito T, Iejima D, et al.: Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 2003, 24(13):2277-86.
  • [10]Yang XB, Roach HI, Clarke NM, Howdle SM, Quirk R, Shakesheff KM, et al.: Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 2001, 29(6):523-31.
  • [11]Yang XB, Bhatnagar RS, Li S, Oreffo RO: Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004, 10(7–8):1148-59.
  • [12]MacArthur BD, Oreffo RO: Bridging the gap. Nature 2005, 433(7021):19.
  • [13]Lyons FG, Al-Munajjed AA, Kieran SM, Toner ME, Murphy CM, Duffy GP, et al.: The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 2010, 31(35):9232-43.
  • [14]Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA: Cell based bone tissue engineering in jaw defects. Biomaterials 2008, 29(21):3053-61.
  • [15]Ohgushi H, Goldberg VM, Caplan AI: Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 1989, 60(3):334-9.
  • [16]Nerem RM, Sambanis A: Tissue engineering: from biology to biological substitutes. Tissue Eng 1995, 1(1):3-13.
  • [17]Schantz J-T, Hutmacher DW, Lam CXF, Brinkmann M, Wong KM, Lim TC, et al.: Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 2003, 9(4, Supplement 1):127-39.
  • [18]Dupont KM, Sharma K, Stevens HY, Boerckel JD, García AJ, Guldberg RE: Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci 2010, 107(8):3305-10.
  • [19]Rai B, Lin JL, Lim ZXH, Guldberg RE, Hutmacher DW, Cool SM: Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds. Biomaterials 2010, 31(31):7960-70.
  • [20]Amini AR, Laurencin CT, Nukavarapu SP: Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012, 40(5):363-408.
  • [21]O’Brien FJ: Biomaterials and scaffolds for tissue engineering. Materials Today 2011, 14(3):88-95.
  • [22]Phelps EA, Garcia AJ: Update on therapeutic vascularization strategies. Regen Med 2009, 4(1):65-80.
  • [23]Ko HC, Milthorpe BK, McFarland CD: Engineering thick tissues—the vascularisation problem. Eur Cells Mater 2007, 14:1-18.
  • [24]Krishnan L, Willett N, Guldberg R: Vascularization strategies for bone regeneration. Ann Biomed Eng 2014, 42(2):432-44.
  • [25]Farrell E, Both SK, Odorfer KI, Koevoet W, Kops N, O’Brien FJ, et al.: In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 2011, 12:31. BioMed Central Full Text
  • [26]Farrell E, van der Jagt OP, Koevoet W, Kops N, van Manen CJ, Hellingman CA, et al.: Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng Part C 2009, 15(2):285-95.
  • [27]Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M: Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008, 40(1):46-62.
  • [28]McNamara L. Bone as a Material—Intramembranous Ossification. In: Ducheyne P, Hutmacher DE, Grainger DE, James C, editors. Comprehensive Biomaterials. 6. UK: Elsevier; 2011. p. 4000.
  • [29]Kronenberg HM: Developmental regulation of the growth plate. Nature 2003, 423(6937):332-6.
  • [30]Gerber HP, Ferrara N: Angiogenesis and bone growth. Trends Cardiovasc Med 2000, 10(5):223-8.
  • [31]Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F: Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 2000, 113(Pt 1):59-69.
  • [32]Oliveira SM, Amaral IF, Barbosa MA, Teixeira CC: Engineering endochondral bone: in vitro studies. Tissue Eng Part A 2009, 15(3):625-34.
  • [33]Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, et al.: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci 2010, 107(16):7251-6.
  • [34]Freeman FE, Haugh MG, McNamara LM: Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy. J Tissue Eng Regen Med 2013.
  • [35]Pfander D, Gelse K: Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 2007, 19(5):457-62.
  • [36]Jukes JM, Both SK, Leusink A, Sterk LMT, van Blitterswijk CA, de Boer J: Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci 2008, 105(19):6840-5.
  • [37]Oliveira SM, Mijares DQ, Turner G, Amaral IF, Barbosa MA, Teixeira CC: Engineering endochondral bone: in vivo studies. Tissue Eng A 2009, 15(3):635-43.
  • [38]Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, et al.: Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci 2013, 110(10):3997-4002.
  • [39]Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, et al.: Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 2014, 35(27):7800-10.
  • [40]van der Stok J, Koolen MK, Jahr H, Kops N, Waarsing JH, Weinans H, et al.: Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects. Eur Cells Mater 2014, 27:137-48.
  • [41]Rivron NC, Liu JJ, Rouwkema J, de Boer J, van Blitterswijk CA: Engineering vascularised tissues in vitro. Eur Cells Mater 2008, 15:27-40.
  • [42]Kanczler JM, Oreffo RO: Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cells Mater 2008, 15:100-14.
  • [43]Correia C, Grayson WL, Park M, Hutton D, Zhou B, Guo XE, et al.: In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS One 2011, 6(12):28352.
  • [44]Ghanaati S, Fuchs S, Webber MJ, Orth C, Barbeck M, Gomes ME, et al.: Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. J Tissue Eng Regen Med 2011, 5(6):136-43.
  • [45]Pedersen TO, Blois AL, Xing Z, Xue Y, Sun Y, Finne-Wistrand A, et al.: Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs. Stem Cell Res Therapy 2013, 4(3):52. BioMed Central Full Text
  • [46]McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al.: The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater 2013, 9(12):9303-16.
  • [47]Duffy GP, McFadden TM, Byrne EM, Gill SL, Farrell E, O’Brien FJ: Towards in vitro vascularisation of collagen-GAG scaffolds. Eur Cells Mater 2011, 21:15-30.
  • [48]Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I: Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 2007, 25(7):1823-9.
  • [49]Villars F, Bordenave L, Bareille R, Amedee J: Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochemistry 2000, 79(4):672-85.
  • [50]Sun H, Qu Z, Guo Y, Zang G, Yang B: In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed Eng Online 2007, 6:41. BioMed Central Full Text
  • [51]Liao J, Hammerick KE, Challen GA, Goodell MA, Kasper FK, Mikos AG: Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. J Orthopaed Res 2011, 29(10):1544-53.
  • [52]Rouwkema J, de Boer J, Van Blitterswijk CA: Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 2006, 12(9):2685-93.
  • [53]Saleh FA, Whyte M, Genever PG: Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cells Mater 2011, 22:242-57.
  • [54]Freeman FE, Haugh MG, McNamara L: An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralisation potential of MSCs in vitro whilst also allowing for vessel formation. Tissue Eng A 2015, 21(7–8):1320-32.
  • [55]Sheyn D, Kallai I, Tawackoli W, Cohn Yakubovich D, Oh A, Su S, et al.: Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm 2011, 8(5):1592-601.
  • [56]Sun N, Lee A, Wu JC: Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat Protoc 2009, 4(8):1192-201.
  • [57]Allen AB, Gazit Z, Su S, Stevens HY, Guldberg RE: In Vivo Bioluminescent Tracking of Mesenchymal Stem Cells Within Large Hydrogel Constructs. Tissue Engineering Part C: Methods 2014, 20(10):806-16.
  • [58]Korff T, Augustin HG: Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 1998, 143(5):1341-52.
  • [59]Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al.: An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011, 32(1):65-74.
  • [60]Duvall CL, Taylor WR, Weiss D, Guldberg RE: Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol 2004, 287(1):H302-10.
  • [61]Nyangoga H, Mercier P, Libouban H, Basle MF, Chappard D: Three-dimensional characterization of the vascular bed in bone metastasis of the rat by microcomputed tomography (MicroCT). PLoS One 2011., 6(3) Article ID e17336
  • [62]Young S, Kretlow JD, Nguyen C, Bashoura AG, Baggett LS, Jansen JA, et al.: Microcomputed tomography characterization of neovascularization in bone tissue engineering applications. Tissue Eng Part B Rev 2008, 14(3):295-306.
  • [63]Mendes SC, Tibbe JM, Veenhof M, Both S, Oner FC, van Blitterswijk CA, et al.: Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 2004, 15(10):1123-8.
  • [64]Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al.: Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997, 12(9):1335-47.
  • [65]Caplan AI: All MSCs are pericytes? Cell Stem Cell 2008, 3(3):229-30.
  • [66]Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al.: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008, 3(3):301-13.
  • [67]Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al.: Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008, 103(2):194-202.
  • [68]Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ: Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 2007, 25(9):2363-70.
  • [69]Chan BP, Leong KW: Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008, 17(Suppl 4):467-79.
  文献评价指标  
  下载次数:153次 浏览次数:12次