期刊论文详细信息
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine
Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study
Keith Lurie1  Demetris Yannopoulos2  Scott McKnite1  Jennifer Rees1  Anja Metzger1  Laura Puertas1  Guillaume Debaty1  Younghoon Kwon3 
[1] Department of Emergency Medicine, University of Minnesota, CMinneapolis, MN, USA;Department of Medicine-Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA;Department of Medicine-Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
关键词: Intrathoracic pressure regulation;    Intrapleural pressure;    Impedance threshold device;    Cardiopulmonary resuscitation;    Airway pressure;   
Others  :  1231197
DOI  :  10.1186/s13049-015-0164-5
 received in 2015-05-29, accepted in 2015-10-20,  发布年份 2015
PDF
【 摘 要 】

Background

The objective of this investigation was to evaluate changes in intrathoracic pressure (Ppl), airway pressure (Paw) and vital organ perfusion pressures during standard and intrathoracic pressure regulation (IPR)-assisted cardiopulmonary resuscitation (CPR).

Methods

Multiple CPR interventions were assessed, including newer ones based upon IPR, a therapy that enhances negative intrathoracic pressure after each positive pressure breath. Eight anesthetized pigs underwent 4 min of untreated ventricular fibrillation followed by 2 min each of sequential interventions: (1) conventional standard CPR (STD), (2) automated active compression decompression (ACD) CPR, (3) ACD+ an impedance threshold device (ITD) CPR or (4) ACD+ an intrathoracic pressure regulator (ITPR) CPR, the latter two representing IPR-based CPR therapies. Intrapleural (Ppl), airway (Paw), right atrial, intracranial, and aortic pressures, along with carotid blood flow and end tidal CO 2 , were measured and compared during each CPR intervention.

Results

The lowest mean and decompression phase Ppl were observed with IPR-based therapies [Ppl mean (mean ± SE): STD (0.8 ± 1.1 mmHg); ACD (−1.6 ± 1.6); ACD-ITD (−3.7 ± 1.5, p < 0.05 vs. both STD and ACD); ACD-ITPR (−7.0 ± 1.9, p < 0.05 vs. both STD and ACD)] [Ppl decompression (mean ± SE): STD (−6.3 ± 2.2); ACD (−13.0 ± 3.8); ACD-ITD −16.9 ± 3.6, p < 0.05 vs. both STD and ACD); ACD-ITPR −18.7 ± 3.5, p < 0.05 vs. both STD and ACD)]. Interventions with the lower mean or decompression phase Ppl also demonstrated lower Paw and were associated with higher vital organ perfusion pressures.

Conclusions

IPR-based CPR methods, specifically ACD-ITPR, yielded the most pronounced reduction in both Ppl and Paw and resulted in the most favorable augmentation of hemodynamics during CPR.

【 授权许可】

   
2015 Kwon et al.

【 预 览 】
附件列表
Files Size Format View
20151109082435666.pdf 1463KB PDF download
Fig. 5. 39KB Image download
Fig. 4. 33KB Image download
Fig. 3. 31KB Image download
Fig. 2. 76KB Image download
Fig. 1. 8KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Rudikoff MT, Maughan WL, Effron M, Freund P, Weisfeldt ML. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation. 1980; 61(2):345-352.
  • [2]Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. Jama. 1960; 173:1064-1067.
  • [3]Lurie KG, Lindo C, Chin J. CPR: the P stands for plumber’s helper. JAMA. 1990; 264(13):1661.
  • [4]Perkins GD, Brace S, Gates S. Mechanical chest-compression devices: current and future roles. Curr Opin Crit Care. 2010; 16(3):203-210.
  • [5]Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM et al.. Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet. 2011; 377(9762):301-311.
  • [6]Ma MH, Hwang JJ, Lai LP, Wang SM, Huang GT, Shyu KG et al.. Transesophageal echocardiographic assessment of mitral valve position and pulmonary venous flow during cardiopulmonary resuscitation in humans. Circulation. 1995; 92(4):854-861.
  • [7]Niemann JT, Rosborough JP, Hausknecht M, Garner D, Criley JM. Pressure-synchronized cineangiography during experimental cardiopulmonary resuscitation. Circulation. 1981; 64(5):985-991.
  • [8]Weisfeldt ML, Chandra N. Physiology of cardiopulmonary resuscitation. Annu Rev Med. 1981; 32:435-442.
  • [9]Sigurdsson G, Yannopoulos D, McKnite SH, Lurie KG. Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow. Curr Opin Crit Care. 2003; 9(3):183-188.
  • [10]Sasson C, Meischke H, Abella BS, Berg RA, Bobrow BJ, Chan PS et al.. Increasing cardiopulmonary resuscitation provision in communities with low bystander cardiopulmonary resuscitation rates: a science advisory from the American Heart Association for healthcare providers, policymakers, public health departments, and community leaders. Circulation. 2013; 127(12):1342-1350.
  • [11]Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation. 1995; 91(6):1629-1632.
  • [12]Yannopoulos D, Nadkarni VM, McKnite SH, Rao A, Kruger K, Metzger A et al.. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation. 2005; 112(6):803-811.
  • [13]Shultz JJ, Coffeen P, Sweeney M, Detloff B, Kehler C, Pineda E et al.. Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation. 1994; 89(2):684-693.
  • [14]Turner JM, Mead J, Wohl ME. Elasticity of human lungs in relation to age. J Appl Physiol. 1968; 25(6):664-671.
  • [15]Lurie KG, Yannopoulos D, McKnite SH, Herman ML, Idris AH, Nadkarni VM et al.. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care. 2008; 53(7):862-870.
  • [16]Segal N, Parquette B, Ziehr J, Yannopoulos D, Lindstrom D. Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series. Resuscitation. 2013; 84(4):450-453.
  • [17]Yannopoulos D, Aufderheide TP, McKnite S, Kotsifas K, Charris R, Nadkarni V et al.. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Resuscitation. 2006; 69(3):487-494.
  • [18]Hausknecht MJ, Wise RA, Brower RG, Hassapoyannes C, Weisfeldt ML, Suzuki J et al.. Effects of lung inflation on blood flow during cardiopulmonary resuscitation in the canine isolated heart-lung preparation. Circ Res. 1986; 59(6):676-683.
  • [19]Chandra N, Guerci A, Weisfeldt ML, Tsitlik J, Lepor N. Contrasts between intrathoracic pressures during external chest compression and cardiac massage. Crit Care Med. 1981; 9(11):789-792.
  • [20]Metzger AK, Herman M, McKnite S, Tang W, Yannopoulos D. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure. Crit Care Med. 2012; 40(6):1851-1856.
  • [21]Yannopoulos D, Metzger A, McKnite S, Nadkarni V, Aufderheide TP, Idris A et al.. Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation. 2006; 70(3):445-453.
  • [22]Aufderheide TP, Lurie KG. Vital organ blood flow with the impedance threshold device. Crit Care Med. 2006; 34(12 Suppl):S466-S473.
  • [23]Lurie KG, Mulligan KA, McKnite S, Detloff B, Lindstrom P, Lindner KH. Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest. 1998; 113(4):1084-1090.
  • [24]Wenzel V, Fuerst RS, Idris AH, Banner MJ, Rush WJ, Orban DJ. Automatic mechanical device to standardize active compression-decompression CPR. Ann Emerg Med. 1995; 25(3):386-389.
  • [25]Chang MW, Coffeen P, Lurie KG, Shultz J, Bache RJ, White CW. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest. 1994; 106(4):1250-1259.
  • [26]Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation. 2002; 105(1):124-129.
  • [27]Lurie KG, Voelckel WG, Zielinski T, McKnite S, Lindstrom P, Peterson C et al.. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg. 2001; 93(3):649-655.
  • [28]Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation. 2000; 101(9):989-994.
  • [29]Simmons DH, Linde LM, Miller JH, O’Reilly RJ. Relation between lung volume and pulmonary vascular resistance. Circ Res. 1961; 9(2):465-471.
  • [30]Yannopoulos D, Zviman M, Castro V, Kolandaivelu A, Ranjan R, Wilson RF et al.. Intra-cardiopulmonary resuscitation hypothermia with and without volume loading in an ischemic model of cardiac arrest. Circulation. 2009; 120(14):1426-1435.
  • [31]Ditchey RV, Lindenfeld J. Potential adverse effects of volume loading on perfusion of vital organs during closed-chest resuscitation. Circulation. 1984; 69(1):181-189.
  • [32]Lurie K, Zielinski T, McKnite S, Sukhum P. Improving the efficiency of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Crit Care Med. 2000; 28(11 Suppl):N207-N209.
  文献评价指标  
  下载次数:33次 浏览次数:9次