期刊论文详细信息
Molecular Cytogenetics
Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes)
Marcelo de Bello Cioffi4  Alongklod Tanomtong5  Weerayuth Supiwong3  Bundit Tengjaroenkul5  Sukhonthip Ditcharoen2  Wagner Franco Molina1  Nuntaporn Getlekha2  Luiz Antonio Carlos Bertollo4  Cassia Fernanda Yano4  Nuntiya Maneechot2 
[1] Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil;Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Muang District, Thailand;Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang 43000, Nong Khai, Thailand;Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil;Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang 40002, Khon Kaen, Thailand
关键词: Centric fission;    Molecular cytogenetics;    Karyotype evolution;    FISH;    Chromosomal rearrangements;   
Others  :  1235473
DOI  :  10.1186/s13039-016-0215-2
 received in 2015-12-11, accepted in 2016-01-07,  发布年份 2016
PDF
【 摘 要 】

Background

The genus Clarias (Clariidae, Siluriformes) contains at least 61 species naturally spread over vast regions of Asia, India and Africa. However, Clarias species have also been introduced in many different countries and represent the most widespread catfishes in the world. These fishes are also known as “walking catfishes” due to their ability to move over land. A large degree of chromosomal variation has been previously found in this family, mainly using conventional cytogenetic investigations, with diploid chromosome numbers ranging between 48 and 100. In this study, we analyzed the karyotype structure and distribution of four repetitive DNA sequences (5S and 18S rDNAs and (CA) 15and (GA) 15microsatellites) in three Clarias species (C. batrachus, C. gariepinus, C. macrocephalus), as well as in a probable natural hybrid of the two latter species from different Thailand river basins.

Results

Clarias gariepinus and C. macrocephalus had 2n = 56 and 2n = 54, respectively, as well as karyotypes composed mainly by metacentric and submetacentric chromosomes. Their karyotypes differed in the number and location of 5S and 18S rDNA sites and in the degree of microsatellite accumulation. An intermediate chromosomal pattern incorporating those of the parental species was found in the probable hybrid, confirming its interspecific origin. Clarias batrachus had 2n = 104 chromosomes and its karyotype was dominated by mainly acrocentric elements, indicating that unusual multiple centric fissions were involved in its karyotype differentiation. The karyotype of this species presented an unexpected dispersion of ribosomal DNAs, possessing 54 and 12 sites of 5S and 18S rDNAs, respectively, as well as a high accumulation and differential distribution of both microsatellite repeats, representing ‘hot spots’ for chromosomal rearrangement.

Conclusion

Both conventional and molecular cytogenetic markers were useful tools for demonstrating remarkable evolutionary dynamism and highlighting multiple chromosomal rearrangements and hybridization events correlated with the notable karyotypic diversity of these walking catfishes.

【 授权许可】

   
2016 Maneechot et al.

【 预 览 】
附件列表
Files Size Format View
20160121080653973.pdf 3313KB PDF download
Fig. 4. 68KB Image download
Fig. 3. 60KB Image download
Fig. 2. 63KB Image download
Fig. 1. 61KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Nelson JS. Fishes of the world. 4th ed. John Wiley and Sons, Inc. press, New York; 2006.
  • [2]Skelton PH. A complete guide to the freshwater fishes of southern Africa. 2nd ed. Struik Publishers, Cape Town, South Africa; 2001.
  • [3]Ng HH, Kottelat M. Clarias serniosus, a new walking catfish (Teleostei: Clariidae) from Laos. Zootaxa. 2014; 3884(5):437-44.
  • [4]Teugels GG, Adriaens D. Taxonomy and phylogeny of Clariidae: an overview. In: Catfishes. Arratia G, Kapoor BG, Chardon M, Diogo R, editors. Science Publishers Inc, Enfield, NH; 2003: p.465-87.
  • [5]Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Repetitive DNAs genome dynamics. Garrido R, editor. Karger, Basel; 2012: p.197-221.
  • [6]Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation related events in plant genomes. Cytogenet Genome Res. 2008; 120:351-57.
  • [7]Boulenger GA. A revision of the African silurid fishes of the subfamily Clariinae. Proceedings of the Zoological Society of London. 1907; 1908b:1062-97.
  • [8]Eyo JE. Congeneric discrimination of morphometric characters among members of the Pisces Genus Clarias (Clariidae) in Anambra River. Nigeria. The Zoologist. 2013; 1:1-17.
  • [9]Agnese JF, Teugels GG. Insight into the phylogeny of African Clariidae (Teleostei: Siluriformes): implications for their body shape evolution, biogeography and taxonomy. Mol Phylogenet Evol. 2005; 36:546-53.
  • [10]Teugels GG. The nomenclature of African Clarias species used in aquaculture. Aquaculture. 1984; 38(4):373-4.
  • [11]Teugels GG. A systematic revision of the African species of the genus Clarias (Pisces; Clariidae). Ann Mus Roy Afr Centr Sci Zool. 1986; 247:1-199.
  • [12]Kottelat M. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool. 2013; 27:1-663.
  • [13]Ng HH, Kottelat M. The identity of Clarias batrachus (Linnaeus, 1758), with the designation of a neotype (Teleostei: Clariidae). Proceedings of the Linnaean Society of London. 2008; 153:725-32.
  • [14]Ráb P. Karyotype of European catfish Silurus glanis (Siluridae, Pisces), with remarks on cytogenetics of siluroid fishes. Folia Zool Brno. 1981; 32(2):271-86.
  • [15]LeGrande WH. Chromosomal evolution in North American catfishes (Siluriformes, Ictaluridae) with particular emphasis on the madtoms, Noturus. Copeia. 1981; 1:33-52.
  • [16]Oliveira C, Gosztonyi AE. A cytogenetic study of Diplomystes mesembrinus (Teleostei, Siluriformes, Diplomystidae) with a discussion of chromosome evolution in Siluriforms. Caryologia. 2000; 53:31-7.
  • [17]Diogo R. Higher-level phylogeny of Siluriformes: an overview. In: Catfishes Science. Arratia G, Kapoor BG, Chardon M, Diogo R, editors. Inc Enfield, Publishers; 2003: p.353-84.
  • [18]Malla TM, Ganesh N. Cytogenetic and tissue toxicity by synthetic sindoor in freshwater catfish. Biomed Pharmacol J. 2009; 2:885-9.
  • [19]Eyo JE. Cytogenetic variations in Clarias species (Clariidae: Siluriformes) of the Anambra river using leucocytes culture tecniques. Anim Res Int. 2005; 2(1):275-86.
  • [20]Feldberg E, Porto JIR, Bertollo LAC. Karyotype evolution in Curimatidae (Teleostei, Characiformes) of the Amazon region. 1. Studies on the genera Curimata, Psectrogaster, Steindachnerina and Curimatella. Rev Brasil Genet. 1992; 15(2):369-83.
  • [21]Crossman EJ, Ráb P. Chromosome-banding study of the Alaska blackfish, Dallia pectoralis (Euteleostei: Esocae) with implications for karyotype evolution and relationships of esocoid fishes. Can J Zool. 1996; 74:147-56.
  • [22]Rebordinos L, Cross I, Merlo A. High Evolutionary Dynamism in 5S rDNA of Fish: State of the Art. Cytogenet Genome Res. 2013; 141:103-113.
  • [23]Raskina O, Belyayev A, Nevo E. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA. 2004; 101:14818-23.
  • [24]Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol. 2010; 10:271. BioMed Central Full Text
  • [25]Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J et al.. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress - activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013; 13:42. BioMed Central Full Text
  • [26]Cioffi MB, Bertollo LAC, Villa MA, Oliveira EA, Tanomtong A, Yano CF et al.. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). Plos One. 2015; 10(6):e0130199.
  • [27]Cox AV, Abdelnour GJ, Bennett MD, Leitch IJ. Genome size and karyotype evolution in the Slipper orchids (Cypripedioideae: Orchidaceae). Am J Bot. 1998; 85:681-7.
  • [28]Pereira CS, Pazian MF, Ráb P, Collares-Pereira MJ. Dynamics of Rex3 in the genomes of endangered Iberian Leuciscinae (Cyprinidae) and their natural hybrids. Mol Cytogenet. 2015; 8:81. BioMed Central Full Text
  • [29]Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004; 431:569-73.
  • [30]Lai J, Li Y, Messing J, Dooner HK. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA. 2005; 102:9068-73.
  • [31]Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006; 127:133.
  • [32]Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res. 2009; 125:132-41.
  • [33]Senanan W, Kapuscinski AR, Na-Nakorn U, Miller LM. Genetic impacts of hybrid catfish farming (Clarias macrocephalus × C. gariepinus) on native catfish populations in central Thailand. Aquaculture. 2004; 235:167-84.
  • [34]Na-Nakorn U. ”Pla Duk”: breeding and farming. Reo See Keaw Printing, Thailand; 1994.
  • [35]Ingthamjitr S. Hybrid catfish Clarias catfish seed production and marketing in Central Thailand and experimental testing of seed quality. Ph.D. Dissertation. Asian Institute of Technology, Bangkok; 1997.
  • [36]Campton DE. Natural hybridization and introgression in fishes. In: Population genetics and fishery management. Washington Sea Grant Program. Ryman N, Utter F, editors. University of Washington Press, Seattle; 1987: p.161-92.
  • [37]Teugels GG, Guyomard R, Legendre M. Enzymatic variation in African clariid catfishes. J Fish Biol. 1992; 40:87-96.
  • [38]Porto-Foresti F, Hashimoto DT, Alves AL, Almeida RBC, Senhorini JA, Bortolozzi J et al.. Cytogenetic markers as diagnoses in the identification of the hybrid between piauçu (Leporinus macrocephalus) and piapara (Leporinus elongatus). Genet Mol Biol. 2008; 31:195-202.
  • [39]Almeida-Toledo LF, Foresti F, Toledo-Filho AS, Bernardino G, Ferrari W, Alcantara RCG. Cytogenetic studies in Colossoma macropomum, Colossoma mitrei and their interespecific hybrids. In: Selection, hybridization and genetic engineering in aquaculture vol 1. Klaustiews K, editor. Heenemann Gm BH & Company, Berlin; 1987: p.190-5.
  • [40]Brinn MNA, Porto JIR, Feldberg E. Karyological evidence for interspecific hybridization between Cichla monoculus and C. temensis (Perciformes, Cichlidae) in the Amazon. Hereditas. 2004; 141:252-7.
  • [41]Nirchio M, Fenocchio AS, Swarça AC, Pérez JE, Granado A, Estrada A, Ron E: Cytogenetic characterization of hybrids offspring between Colossoma macropomum (Cuvier, 1818) and Piaractus brachypomus (Cuvier, 1817) from Caicara del Orinoco, Venezuela, Caryologia. 2003;56:4, 405-411
  • [42]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res. 1984; 12:4127-38.
  • [43]Lewis WH. Polyploidy in species populations. In: Polyploidy: biological relevance. Lewis WH, editor. Plenum, New York; 1980: p.103-44.
  • [44]Mallet J. Hybrid speciation. Nature. 2007; 446:279-83.
  • [45]McClintock B. The significance of responses of the genome to challenge. Science. 1984; 226:792-801.
  • [46]Wang J, Ye LH, Liu QZ, Peng LY, Liu W, Yi XG et al.. Rapid genomic DNA changes in allotetraploid fish hybrids. Heredity. 2015; 114:601-9.
  • [47]Cox MP, Dong T, Shen G, Dalvi Y, Scott DB, Ganley ARD. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns. PLoS Genet. 2014; 10:e1004180.
  • [48]Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Fish cytogenetic techniques (Chondrichthyans and Teleosts) . Ozouf-Costaz C, Pisano E, Foresti F, Almeida Toledo LF, editors. Enfield USA, CRC Press; 2015: p.21-6.
  • [49]Kubat Z, Hobza R, Vyskot B, Kejnovsky E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008; 51:350-56.
  • [50]Pinkel D, Straume T, Gray J. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA. 1986; 83:2934.
  • [51]Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964; 52(2):201.
  • [52]Ifeoluwa OT, Adeogun AO, Bakare AA, Sowumi AA, Agwumba, Ugwumba OA. Karyotypic description of six species of Clarias (Siluriformes: Clariidae) from South West, Nigeria. J Anim Vet Adv. 2011; 3(4):264-73.
  • [53]Wu GM, Xin CB, Chen YL. A comparative study on the karyotypes of four species of catfish. Acta Genet Sinica. 1986; 3(3):213-20.
  • [54]Cui JX, Ren XH, Yu QX. Nuclear DNA content variation in fishes. Cytologia. 1991; 56:425-9.
  • [55]Rishi KK. Chromosomal homogeneity in two Indian catfishes. Geobios. 1978; 5:121-3.
  • [56]Prasad R. Clarias batrachus. In: Fish chromosome atlas. Ponniah AG, John G, editors. Lucknow, India, National Bureau of Fish Genetic Resources; 1998: p.214-5.
  • [57]Hinegardner R, Rosen DE. Cellular DNA content and the evolution of teleostean fishes. Amer Natur. 1972; 106:621-44.
  • [58]Pandey N, Lakra WS. Evidence of female heterogamety, B-chromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture. Aquaculture. 1997; 149:31-7.
  • [59]Nagpure NS, Kushwah B, Srivastava SK, Ponniah AG. Comparative Karyomorphology of African catfish Clarias gariepinus (Burchell) and Asian catfish Clarias batrachus (Linn.). Chromosome sci. 2000; 4:57-9.
  • [60]Siraj SS, Sukardi R, Phaik Imm CC, Mei KH, Vellasamy S, Panandam JM et al.. Chromosome analysis of walking catfish, Clarias spp. J Malaysian Soc Appl Biol. 2009; 38(1):61-4.
  • [61]Yaqoob S, Tahir Mohi-uddin T, Swaleha. Karyotypic analysis of walking catfish Clarias batrachus (Linnaeus, 1758). Researcher. 2012; 4(5):46-8.
  • [62]Ozouf-Costaz C, Parrent M, Teugels GG, Van der Berg E. Further karyological data on African clariid catfishes (Ostariophysi, Siluroidei). Abstr. VIII Congr. Soc Europ Ichthyol. 1994;1:56.
  • [63]Luo JL, Wang ZX, Lin SP, Yang JH. Studies on the karyotype of Clarias fuscus. J Fish China. 1986; 10:441-6.
  • [64]Yu XJ, Zhou T, Li YC, Li K, Zhou M. Chromosomes of Chinese freshwater fishes. Science Press, Beijing; 1989.
  • [65]Arai R, Hirano H. First record of the clariid catfish, Clarias fuscus, from Japan. Japan J Ichthyol. 1974; 21:53-60.
  • [66]Ozouf-costaz C, Teugels GG, Legendre M. Karyological analysis of three strains of the African catfish, Clarias gariepinus (Clariidae), used in Aquaculture. Aquaculture. 1990; 87:271-7.
  • [67]Karahan A, Ergene S. Chromosomal differentiation between populations of Clarias gariepinus (Burchell, 1822) from the Goksu Delta and Orontes River (Turkey). Turk J Biol. 2011; 35:79-87.
  • [68]Omotayo F. Karyological analysis of the African catfish, Clarias gariepinus (Burchell, 1822). Wudpecker J Agric Res. 2012; 1(11):674-7.
  • [69]Awodiran MO, Majolagbe FA, Komolafe OO, Adewumi AA, Oyebola OO, Oyewole RO. Cytogenetic study and serum protein characterization of Clarias gariepinus (Burchell, 1822) and Heterobranchus bidorsalis (Geoffroy Saint-Hillaire, 1809) in South western Nigeria. Int J Biol Chem. 2014; 8(6):2377-86.
  • [70]Donsakul T, Magtoon W. A karyotype of two clariid catfishes, Clarias gariepinus and interspecific hybridization between C. gariepinus and C. macrocephalus. The 17th Congress on science and technology of Thailand B-038. 1992.406-7.
  文献评价指标  
  下载次数:12次 浏览次数:22次