期刊论文详细信息
BMC Genetics
Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae)
Sanae Kasahara1  Célio Fernando Baptista Haddad2  Ana Paula Zampieri Silva1  Simone Lilian Gruber1 
[1] Instituto de Biociências, Departamento de Biologia, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro 13506-900, SP, Brazil;Instituto de Biociências, Departamento de Zoologia, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro 13506-900, SP, Brazil
关键词: Molecular cytogenetics;    FISH;    Chromosome banding;    Diploidisation;    Polyploidy;   
Others  :  1086771
DOI  :  10.1186/1471-2156-14-75
 received in 2013-06-12, accepted in 2013-08-27,  发布年份 2013
PDF
【 摘 要 】

Background

Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype.

Results

Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids.

Conclusions

All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype.

【 授权许可】

   
2013 Gruber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116015202690.pdf 1981KB PDF download
Figure 10. 56KB Image download
Figure 9. 55KB Image download
Figure 8. 118KB Image download
Figure 7. 69KB Image download
Figure 6. 95KB Image download
Figure 5. 90KB Image download
Figure 4. 49KB Image download
Figure 3. 41KB Image download
Figure 2. 91KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Otto SP: The evolutionary consequences of Polyploidy. Cell 2007, 131:452-462.
  • [2]Mable BK, Alexandrou MA, Taylor MI: Genome duplication in amphibians and fish: an extended synthesis. J Zool 2011, 284:151-182.
  • [3]Soltis PS, Soltis DE (Eds): Polyploidy and Genome Evolutuon. Heidelberg, New York, Dordrecht, London: Springer; 2012.
  • [4]Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y: Polyploid Organisms. Sci China Life Sci 2012, 55:301-311.
  • [5]Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, La Marca E, Diaz LM, Sans A, Chen S-H, Hedges SB: The chromosomes of Terraranan frogs: insights into vertebrate cytogenetics. Cytogenet Genome Res 2010, 130–131:1-568.
  • [6]Kuramoto M, Allison A: Karyotypes of five hylid frogs from Papua New Guinea, with a discussion on their systematic implications. Jpn J Herpetol 1991, 14:6-11.
  • [7]Kasahara S, Haddad CFB: Karyotypes of two Brazilian microhylid frogs of the genus Chiasmocleis, including a new case of polyploidy. J Herpetol 1997, 31:139-142.
  • [8]Campos JRC, Martins IA, Haddad CFB, Kasahara S: The karyotype of Holoaden luederwaldti (Anura, Strabomantidae), with report of natural triploidy. Folia Biol 2012, 58:144-150.
  • [9]Targueta CP, Rivera M, Lourenço LB: Karyotypic differentiation via 2n reduction and a finding of a case of triploidy in anurans of the genus Engystomops (Anura, Leiuperidae). Genetica 2012, 139:1339-1347.
  • [10]Mercadal IT: Ceratophrys joazeirensis sp. n. (Ceratophridae, Anura) del noreste de Brazil. Amphib-Reptilia 1986, 7:313-334.
  • [11]Vieira KS, Silva APZ, Arzabe C: Cranial morphology and karyotypic analysis of Ceratophrys joazeirensis (Anura: Ceratophryidae, Ceratophrynae): taxonomic considerations. Zootaxa 2006, 1320:57-68.
  • [12]Rosset SD, Baldo D, Lanzone C, Basso NG: Review of the geographic distribution of diploid and tetraploid populations of the Odontophrynus americanus species complex (Anura: Leptodactylidae). J Herpetol 2006, 40:465-477.
  • [13]Tymowska J: Polyploid and cytogenetic variation in frogs of the genus Xenopus. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. San Diego: Academic Press; 1991:259-297.
  • [14]Evans BJ, Carter TF, Tobias ML, Kelley DB, Hanner R, Tinsley RC: A new species of clawed frog (genus Xenopus) from the Itombwe Massif, Democratic Republic of the Congo: implications for DNA barcodes and biodiversity conservation. Zootaxa 2008, 1780:55-68.
  • [15]Catroli GF, Kasahara S: Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publicatio: Ciências Biológicas e da Saúde 2009, 15:67-86.
  • [16]Anderson K: Chromosome evolution in Holarctic Hyla treefrogs. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. San Diego: Academic Press; 1991:299-331.
  • [17]Wiley JE, Little ML: Replication banding patterns of the diploid-tetraploid treefrog s Hyla chrysoscelis and H. versicolor. Cytogenet Cell Genet 2000, 88:11-14.
  • [18]Beçak ML, Denaro L, Beçak W: Polyploidy and mechanisms of karyotypic diversification in Amphibia. Cytogenetics 1970, 9:225-238.
  • [19]Batistic RF, Soma M, Beçak ML, Beçak W: Further studies on polyploid amphibians. A diploid population of Phyllomedusa burmeisteri. J Hered 1975, 66:160-162.
  • [20]Batistic RF: Aspectos citogenéticos da evolução em Phyllomedusa (Anura - Amphibia). PhD Thesis . Ribeirão Preto, Brazil: Faculdade de Medicina, Universidade de São Paulo - USP; 1989.
  • [21]Pombal JP Jr, Haddad CFB: Espécies de Phyllomedusa do grupo burmeisteri do Brasil oriental, com descrição de uma espécie nova (Amphibia, Hylidae). Rev Bras Biol 1992, 52:217-229.
  • [22]Haddad CFB, Pombal Jr JP, Batistic RF: Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia). J Herpetol 1994, 28:425-430.
  • [23]Haddad CFB: Hibridação natural entre Phyllomedusa distincta e P. tetraploidea (Anura, Hylidae). Rio Claro, Brazil: Thesis, Instituto de Biociências, Universidade Estadual Paulista - UNESP; 1994.
  • [24]Brunes TO, Sequeira F, Haddad CFB, Alexandrino J: Gene and species trees of a Neotropical group of treefrogs: genetic diversification in the Brazilian Atlantic Forest and the origin of a polyploid species. Mol Phylogenet Evol 2010, 57:1120-1133.
  • [25]Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Sihachakr D: GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol Biochem 2003, 41:459-470.
  • [26]Rampin M, Bi K, Bogart JP, Collares-Pereira MJ: Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In situ Hybridization (GISH). Comp Cytogenet 2012, 6:287-300.
  • [27]Bogart JP, Bi K: Genetic and genomic interactions of animals with different ploidy levels. Cytogenet Genome Res 2013, 140:117-136.
  • [28]Bruschi DP, Busin CS, Siqueira S, Recco-Pimentel SM: Cytogenetic analysis of two species in the Phyllomedusa hypochondrialis group (Anura, Hylidae). Hereditas 2012, 149:34-40.
  • [29]Bruschi DP, Busin CS, Lima AP, Rivera M, Blasco-Zúñiga A, Recco-Pimentel SM: Cytogenetic studies in Phyllomedusa vaillantii and Phyllomedusa ayeaye with descriptions of multiple NORs [abstract]. In 7th World Congress of Herpetology. Vancouver, Canada: Society for the Study of Amphibians and Reptiles; 2012:s105.
  • [30]Bruschi DP, Busin CS, Toledo LF, Vasconcellos GA, Strussmann C, Weber LN, Lima AP, Lima JD, Recco-Pimentel SM: Evaluation of the taxonomic status of populations assigned to Phyllomedusa hypochondrialis (Anura, Hylidae, Phyllomedusinae) based on molecular, chromosomal, and morphological approach. BMC Genet 2013, 14:70. BioMed Central Full Text
  • [31]Bogart JP: Evolution of anuran karyotypes. In Evolutionary Biology of Anurans. Edited by Vial JL. Columbia: University of Missouri Press; 1973:337-349.
  • [32]Paiva CR, Nascimento J, Silva APZ, Bernarde PS, Ananias F: Karyotypes and Ag-NORs in Phyllomedusa camba De La Riva, 1999 and P. rhodei Mertens, 1926 (Anura, Hylidae, Phyllomedusinae): cytotaxonomic considerations. Ital J Zool 2010, 77:116-121.
  • [33]Nunes RRA, Fagundes V: Cariótipo de oito espécies de anfíbios das subfamílias Hylinae e Phyllomedusinae (Anura: Hylidae) do Espírito Santo, Brasil. Bol Mus Biol Mello Leitão 2008, 23:21-33.
  • [34]Barth A, Solé M, Costa MA: Chromosome polymorphism in Phyllomedusa rohdei populations (Anura: Hylidae). J Herpetol 2009, 43:676-679.
  • [35]Cardozo DE, Leme DM, Bortoleto JF, Catroli GF, Baldo D, Faivovich J, Kolenc F, Silva APZ, Borteiro C, Haddad CFB, Kasahara S: Karyotypic data on 28 species of Scinax (Amphibia: Anura: Hylidae): diversity and informative variation. Copeia 2011, 2:251-263.
  • [36]Gruber SL, Zina J, Narimatsu H, Haddad CFB, Kasahara S: Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae). BMC Genet 2012, 13:28. BioMed Central Full Text
  • [37]Gruber SL, Haddad CFB, Kasahara S: Karyotype analysis of seven species of the tribe Lophiohylini (Hylinae, Hylidae, Anura), with conventional and molecular cytogenetic techniques. Comp Cytogenet 2012, 6:409-423.
  • [38]Morand M, Hernando AB: Localización cromosómica de genes ribosomales activos en Phyllomedusa hypochondrialis y P. sauvagii (Anura: Hylidae). Cuadernos de Herpetología 1997, 11:31-36.
  • [39]Fagundes V, Yonenaga-Yassuda Y: Evolutionary conservation of whole homeologous chromosome arms in the Akodont rodents Bolomys and Akodon (Muridae, Sigmodontinae): maintenance of interstitial telomeric segments (ITBs) in recent event of centric fusion. Chrom Res 1998, 6:643-648.
  • [40]Ventura K, O’Brien PCM, Yonenaga-Yassuda Y, Ferguson-Smith MA: Chromosome homologies of the highly rearranged karyotypes of four Akodon species (Rodentia, Cricetidae) resolved by reciprocal chromosome painting: the evolution of the lowest diploid number in rodents. Chrom Res 2009, 17:1063-1078.
  • [41]Guggisberg A, Baroux C, Grossniklaus U, Conti1 E: Genomic origin and organization of the allopolyploid Primula egaliksensis investigated by in situ hybridization. Ann Bot 2008, 101:919-927.
  • [42]Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, Sebkova N: Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chrom Res 2010, 18:431-439.
  • [43]Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y: Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity advance online publication 2013, 1-7.
  • [44]Ohno S: Evolution by Gene Duplication. Berlin: New York: Springer-Verlag; 1970.
  • [45]Weiss H, Maluszynska J: Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 2000, 133:255-261.
  • [46]Schmid M, Haaf T, Schempp W: Chromosome banding in Amphibia IX. The polyploid karyotypes of Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae). Chromosoma 1985, 91:172-184.
  • [47]Lim KY, Matyasek R, Kovarik A, Leitch A: Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot 2007, 100:219-224.
  • [48]Beaulieu J, Jean M, Belzile F: The allotetraploid Arabidopsis thaliana - Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 2009, 281:421-435.
  • [49]Baldissera FA Jr, Oliveira PSL, Kasahara S: Cytogenetics of four Brazilian Hyla species (Amphibia-Anura) and description of a case with a supernumerary chromosome. Rev Bras Genet 1993, 16:335-345.
  • [50]Schmid M: Chromosome banding in Amphibia I. Constitutive heterochromatin and nucleolus organizers regions in Bufo and Hyla. Chromosoma 1978, 66:361-388.
  • [51]Kasahara S, Silva APZ, Gruber SL: Use of lymphocyte cultures for BrdU replication banding patterns in anuran species (Amphibia). Genet Mol Biol 1998, 21:471-476.
  • [52]Silva APZ, Haddad CFB, Kasahara S: Chromosomal studies on five species of the genus Leptodactylus Fitzinger, 1826 (Amphibia, Anura) using differential staining. Cytobios 2000, 103:25-38.
  • [53]Howell WM, Black DA: Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: 1-step method. Experientia 1980, 36:1014-1015.
  • [54]Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 1972, 75:304-306.
  • [55]Dutrillaux B, Couturier J: La Pratique de l’Analyse Chromosomique. Paris: Masson; 1981.
  • [56]Matsuda Y, Chapman VM: Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 1995, 16:261-272.
  • [57]Schweizer D: Simultaneous fluorescent staining of R bands and specific heterochromatin regions (DA-DAPI bands) in human chromosomes. Cytogenet Cell Genet 1980, 27:190-193.
  • [58]Meunier-Rotival M, Cortadas J, Macaya G: Isolation and organization of calf ribosomal DNA. Nucleic Acids Res 1979, 6:2109-2123.
  • [59]Pinkel D, Straume T, Gray JW: Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 1986, 83:2934-2938.
  • [60]Green DM, Sessions SK: Nomenclature for chromosomes. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. San Diego: Academic Press; 1991:431-432.
  • [61]Green DM, Sessions SK: Karyology and cytogenetics. In Amphibian Biology. 7th edition. Edited by Heatwole H, Tyler M. Chipping Norton: Surrey Beatty and Sons; 2007:2756-2841.
  文献评价指标  
  下载次数:26次 浏览次数:2次