期刊论文详细信息
Virology Journal
Plant-based vaccines against viruses
Edward P Rybicki1 
[1]Biopharming Research Unit, Department of Molecular & Cell Biology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
关键词: ZMapp;    Ebola;    Rabies;    Bluetongue;    Influenza;    HPV;    HCV;    HBV;    HIV;    Monoclonal antibody;    Plant-made antigen;    Biofarming;    Vaccine;    Virus;   
Others  :  1131081
DOI  :  10.1186/s12985-014-0205-0
 received in 2014-08-20, accepted in 2014-11-17,  发布年份 2014
PDF
【 摘 要 】

Plant-made or “biofarmed” viral vaccines are some of the earliest products of the technology of plant molecular farming, and remain some of the brightest prospects for the success of this field. Proofs of principle and of efficacy exist for many candidate viral veterinary vaccines; the use of plant-made viral antigens and of monoclonal antibodies for therapy of animal and even human viral disease is also well established. This review explores some of the more prominent recent advances in the biofarming of viral vaccines and therapies, including the recent use of ZMapp for Ebolavirus infection, and explores some possible future applications of the technology.

【 授权许可】

   
2014 Rybicki; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301005339788.pdf 639KB PDF download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ: The expression of a nopaline synthase - human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 1986, 6:347-357.
  • [2]Hiatt A, Cafferkey R, Bowdish K: Production of antibodies in transgenic plants. Nature 1989, 342:76-78.
  • [3]Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A: Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 1990, 8:217-221.
  • [4]Mason HS, Lam DM, Arntzen CJ: Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 1992, 89:11745-11749.
  • [5]Usha R, Rohll JB, Spall VE, Shanks M, Maule AJ, Johnson JE, Lomonossoff GP: Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 1993, 197:366-374.
  • [6]Plant vaccines: edible, but how credible?CVI Forum 1996, 1996:10-13.
  • [7]Rybicki EP: Plant-produced vaccines: promise and reality. Drug Discov Today 2009, 14:16-24.
  • [8]Rybicki EP: Plant-made vaccines for humans and animals. Plant Biotechnol J 2010, 8:620-637.
  • [9]Scotti N, Rybicki EP: Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2013, 12:211-224.
  • [10]Giorgi C, Franconi R, Rybicki EP: Human papillomavirus vaccines in plants. Expert Rev Vaccines 2010, 9:913-924.
  • [11]Pniewski T: The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? Int J Mol Sci 2013, 14:1978-1998.
  • [12]McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR: Human hepatitis B vaccine from recombinant yeast. Nature 1984, 307:178-180.
  • [13][http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/index5.html] webcite Hepatitis B. []
  • [14]Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C: Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci U S A 1995, 92:3358-3361.
  • [15]Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y: Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci U S A 2001, 98:11539-11544.
  • [16]Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS: Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A 2005, 102:3378-3382.
  • [17]Kumar GB, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA: Expression of hepatitis B surface antigen in transgenic banana plants. Planta 2005, 222:484-493.
  • [18]Pniewski T: Is an oral plant-based vaccine against hepatitis B virus possible? Curr Pharm Biotechnol 2012, 13:2692-2704.
  • [19]Pniewski T, Kapusta J, Bociag P, Wojciechowicz J, Kostrzak A, Gdula M, Fedorowicz-Stronska O, Wojcik P, Otta H, Samardakiewicz S, Wolko B, Plucienniczak A: Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 2011, 52:125-136.
  • [20]Huang Z, LePore K, Elkin G, Thanavala Y, Mason HS: High-yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnol J 2008, 5:202-209.
  • [21]Huang Z, Mason HS: Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnol J 2004, 2:241-249.
  • [22]Huang Z, Elkin G, Maloney BJ, Beuhner N, Arntzen CJ, Thanavala Y, Mason HS: Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine 2005, 23:1851-1858.
  • [23]Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS: Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 2006, 24:2506-2513.
  • [24]Rybicki EP, Martin DP: Virus-derived ssDNA vectors for the expression of foreign proteins in plants. Curr Top Microbiol Immunol 2014, 375:19-45.
  • [25]Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H: A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 2009, 103:706-714.
  • [26][http://www.who.int/mediacentre/factsheets/fs164/en/index.html] webcite Hepatitis C: Fact Sheet No. 164. []
  • [27][http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm377888.htm] webcite FDA approves Sovaldi for chronic hepatitis C. []
  • [28]Alter HJ, Purcell RH, Shih JW, Melpolder JC, Houghton M, Choo QL, Kuo G: Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N Engl J Med 1989, 321:1494-1500.
  • [29]Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M: Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244:359-362.
  • [30]Nemchinov LG, Liang TJ, Rifaat MM, Mazyad HM, Hadidi A, Keith JM: Development of a plant-derived subunit vaccine candidate against hepatitis C virus. Arch Virol 2000, 145:2557-2573.
  • [31]Natilla A, Piazzolla G, Nuzzaci M, Saldarelli P, Tortorella C, Antonaci S, Piazzolla P: Cucumber mosaic virus as carrier of a hepatitis C virus-derived epitope. Arch Virol 2004, 149:137-154.
  • [32]Piazzolla G, Nuzzaci M, Tortorella C, Panella E, Natilla A, Boscia D, De Stradis A, Piazzolla P, Antonaci S: Immunogenic properties of a chimeric plant virus expressing a hepatitis C virus (HCV)-derived epitope: new prospects for an HCV vaccine. J Clin Immunol 2005, 25:142-152.
  • [33]Nuzzaci M, Piazzolla G, Vitti A, Lapelosa M, Tortorella C, Stella I, Natilla A, Antonaci S, Piazzolla P: Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope. Arch Virol 2007, 152:915-928.
  • [34]Nuzzaci M, Vitti A, Condelli V, Lanorte MT, Tortorella C, Boscia D, Piazzolla P, Piazzolla G: In vitro stability of Cucumber mosaic virus nanoparticles carrying a Hepatitis C virus-derived epitope under simulated gastrointestinal conditions and in vivo efficacy of an edible vaccine. J Virol Methods 2010, 165:211-215.
  • [35]El Attar AK, Shamloul AM, Shalaby AA, Riad BY, Saad A, Mazyad HM, Keith JM: Expression of chimeric HCV peptide in transgenic tobacco plants infected with recombinant alfalfa mosaic virus for development of a plant-derived vaccine against HCV. Afr J Biotechnol 2004, 3:588-594.
  • [36]Denis J, Majeau N, Acosta-Ramirez E, Savard C, Bedard MC, Simard S, Lecours K, Bolduc M, Pare C, Willems B, Shoukry N, Tessier P, Lacasse P, Lamarre A, Lapointe R, Lopez Macias C, Leclerc D: Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology 2007, 363:59-68.
  • [37]Mason HS, Hong F, Bjorklund G: Methods of protein production and compositions thereof. US Patent Office Application 20140127749, 2012.
  • [38]Abdel-Mageed WS: Expression of HCV Glycoprotein E1 and its Evaluation for Vaccine Development.PhD Dissertation. Rheinisch-Westfälischen Technischen Hochschule, 2011.
  • [39][http://www.who.int/mediacentre/factsheets/fs211/en/] webcite Influenza (Seasonal) Fact Sheet No 211. []
  • [40][http://www.who.int/influenza/vaccines/virus/en/] webcite Influenza vaccine viruses and reagents. []
  • [41]Partridge J, Kieny MP: Global production capacity of seasonal influenza vaccine in 2011. Vaccine 2013, 31:728-731.
  • [42][http:/ / www.who.int/ csr/ resources/ publications/ influenza/ WHO_CDS_EPR_GIP_2006_1/ en/ ] webcite Global pandemic influenza action plan to increase vaccine supply. []
  • [43]Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson AL, Hitzeroth II, Rybicki EP: Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol 2012, 12:14.
  • [44]D'Aoust MA, Lavoie PO, Couture MM, Trepanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vezina LP: Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 2008, 6:930-940.
  • [45]Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, Massare M, Pushko P, Mytle N, Rowe T, Smith G, Ross TM: Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 2007, 25:3871-3878.
  • [46]D'Aoust MA, Couture MM, Charland N, Trepanier S, Landry N, Ors F, Vezina LP: The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 2010, 8:607-619.
  • [47]Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M, Lapini G, Vezina LP: Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 2010, 5:e15559.
  • [48]Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V, Musiychuk K, Bi H, Farrance C, Shamloul M, Kushnir N, Sharma S, Yusibov V: Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccin 2011, 7(Suppl):41-50.
  • [49]Pellerin C: DARPA Effort Speeds Biothreat Response. In American Forces Press Service: U.S. Department of Defense; 2010.
  • [50][http://www.darpa.mil/NewsEvents/Releases/2012/07/25.aspx] webcite DARPA makes 10 million strides in the race to contain a hypothetical pandemic. []
  • [51]Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L: Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 2010, 8:564-587.
  • [52]Zhang S, Sherwood RW, Yang Y, Fish T, Chen W, McCardle JA, Jones RM, Yusibov V, May ER, Rose JK, Thannhauser TW: Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts. Proteomics 2012, 12:1269-1288.
  • [53]Lin SC, Jan JT, Dionne B, Butler M, Huang MH, Wu CY, Wong CH, Wu SC: Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 2013, 8:e66719.
  • [54]Sippel K: Medicago reports positive results for H7N9 pre-clinical trial: First in the world. 2013.
  • [55]Chichester JA, Jones RM, Green BJ, Stow M, Miao F, Moonsammy G, Streatfield SJ, Yusibov V: Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 2012, 4:3227-3244.
  • [56]Jul-Larsen A, Madhun AS, Brokstad KA, Montomoli E, Yusibov V, Cox RJ: The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants. Hum Vaccin Immunother 2012, 8:653-661.
  • [57]Cummings JF, Guerrero ML, Moon JE, Waterman P, Nielsen RK, Jefferson S, Gross FL, Hancock K, Katz JM, Yusibov V: Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: a Phase 1 dose-escalation study in healthy adults. Vaccine 2014, 32:2251-2259.
  • [58]Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X, Tumpey TM, Green BJ, Shamloul M, Norikane J, Bi H, Hartman CE, Bottone C, Stewart M, Streatfield SJ, Yusibov V: A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother 2013, 9:553-560.
  • [59]Neuhaus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE, Shoji Y, Guzman CA, Yusibov V, Sewald K, Braun A: A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 2014, 32:3216-3222.
  • [60]Mallajosyula JK, Hiatt E, Hume S, Johnson A, Jeevan T, Chikwamba R, Pogue GP, Bratcher B, Haydon H, Webby RJ, McCormick AA: Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Hum Vaccin Immunother 2013, 10:586-595.
  • [61]Phan HT, Pohl J, Floss DM, Rabenstein F, Veits J, Le BT, Chu HH, Hause G, Mettenleiter T, Conrad U: ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. Plant Biotechnol J 2013, 11:582-593.
  • [62]Matic S, Rinaldi R, Masenga V, Noris E: Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 2011, 11:106.
  • [63]Tyulkina LG, Skurat EV, Frolova OY, Komarova TV, Karger EM, Atabekov IG: New viral vector for superproduction of epitopes of vaccine proteins in plants. Acta Nat 2011, 3:73-82.
  • [64]Petukhova NV, Gasanova TV, Stepanova LA, Rusova OA, Potapchuk MV, Korotkov AV, Skurat EV, Tsybalova LM, Kiselev OI, Ivanov PA, Atabekov JG: Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by Tobacco mosaic virus-based vectors. Curr Pharm Des 2013, 19:5587-5600.
  • [65]Edney A: Merck’s HPV Vaccine Gardasil Shown Safe in Kaiser Study. vol. 2014: Bloomberg.com; 2012.
  • [66]Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001, 94:153-156.
  • [67]Dochez C, Bogers JJ, Verhelst R, Rees H: HPV vaccines to prevent cervical cancer and genital warts: an update. Vaccine 2014, 32:1595-1601.
  • [68]Tyler M, Tumban E, Chackerian B: Second-generation prophylactic HPV vaccines: successes and challenges. Expert Rev Vaccines 2014, 13:247-255.
  • [69]Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, Doorbar J, Stern PL, Stanley M, Arbyn M, Poljak M, Cuzick J, Castle PE, Schiller JT, Markowitz LE, Fisher WA, Canfell K, Denny LA, Franco EL, Steben M, Kane MA, Schiffman M, Meijer CJ, Sankaranarayanan R, Castellsague X, Kim JJ, Brotons M, Alemany L, Albero G, Diaz M, de Sanjose S, et al.: Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013, 31(Suppl 7):H1-H31.
  • [70]Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP: Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 2003, 148:1771-1786.
  • [71]Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E, Williamson AL, Clements JD, Rose RC: Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol 2003, 77:8702-8711.
  • [72]Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M: Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 2003, 77:9211-9220.
  • [73]Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP: Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 2007, 7:56.
  • [74]Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, Williamson AL, Rybicki EP: Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol 2006, 13:845-853.
  • [75]Palmer KE, Benko A, Doucette SA, Cameron TI, Foster T, Hanley KM, McCormick AA, McCulloch M, Pogue GP, Smith ML, Christensen ND: Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine 2006, 24:5516-5525.
  • [76]Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP: Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 2007, 88:1460-1469.
  • [77]Fernandez-San Millan A, Ortigosa SM, Hervas-Stubbs S, Corral-Martinez P, Segui-Simarro JM, Gaetan J, Coursaget P, Veramendi J: Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 2008, 6:427-441.
  • [78]Waheed MT, Thones N, Muller M, Hassan SW, Gottschamel J, Lossl E, Kaul HP, Lossl AG: Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnol J 2011, 9:651-660.
  • [79]Matic S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E: Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 2012, 10:410-421.
  • [80]Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M: In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 2012, 236:1305-1313.
  • [81]Rybicki EP, Williamson AL, Meyers A, Hitzeroth II: Vaccine farming in Cape Town. Hum Vaccin 2011, 7:339-348.
  • [82]Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A, Simeone P, Dona MG, Venuti A, Giorgi C: Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 2002, 62:3654-3658.
  • [83]Franconi R, Massa S, Illiano E, Mullar A, Cirilli A, Accardi L, Di Bonito P, Giorgi C, Venuti A: Exploiting the plant secretory pathway to improve the anticancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol 2006, 19:187-197.
  • [84]Di Bonito P, Grasso F, Mangino G, Massa S, Illiano E, Franconi R, Fanales-Belasio E, Falchi M, Affabris E, Giorgi C: Immunomodulatory activity of a plant extract containing human papillomavirus 16-E7 protein in human monocyte-derived dendritic cells. Int J Immunopathol Pharmacol 2009, 22:967-978.
  • [85]Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, Venuti A: Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 2007, 25:3018-3021.
  • [86]Venuti A, Massa S, Mett V, Vedova LD, Paolini F, Franconi R, Yusibov V: An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 2009, 27:3395-3397.
  • [87]Buyel JF, Bautista JA, Fischer R, Yusibov VM: Extraction, purification and characterization of the plant-produced HPV16 subunit vaccine candidate E7 GGG. J Chromatogr B Analyt Technol Biomed Life Sci 2012, 880:19-26.
  • [88]Paz De la Rosa G, Monroy-Garcia A, Mora-Garcia Mde L, Pena CG, Hernandez-Montes J, Weiss-Steider B, Gomez-Lim MA: An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 2009, 6:2.
  • [89]Monroy-Garcia A, Gomez-Lim MA, Weiss-Steider B, la Rosa GP, Hernandez-Montes J, Perez-Saldana K, Tapia-Guerrero YS, Toledo-Guzman ME, Santiago-Osorio E, Sanchez-Pena HI, Mora-Garcia Mde L: A novel HPV 16 L1-based chimeric virus-like particle containing E6 and E7 seroreactive epitopes permits highly specific detection of antibodies in patients with CIN 1 and HPV-16 infection. Virol J 2011, 8:59.
  • [90]Hongli L, Xukui L, Ting L, Wensheng L, Lusheng S, Jin Z: Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum Vaccin Immunother 2013, 9:83-89.
  • [91]Pineo CB, Hitzeroth II, Rybicki EP: Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnol J 2013, 11:964-975.
  • [92]Schellenbacher C, Roden R, Kirnbauer R: Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 2009, 83:10085-10095.
  • [93]Jagu S, Kwak K, Karanam B, Huh WK, Damotharan V, Chivukula SV, Roden RB: Optimization of multimeric human papillomavirus L2 vaccines. PLoS One 2013, 8:e55538.
  • [94]Wang JW, Roden RB: L2, the minor capsid protein of papillomavirus. Virology 2013, 445:175-186.
  • [95]Varsani A, Williamson AL, de Villiers D, Becker I, Christensen ND, Rybicki EP: Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J Virol 2003, 77:8386-8393.
  • [96]McGrath M, de Villiers GK, Shephard E, Hitzeroth II, Rybicki EP: Development of human papillomavirus chimaeric L1/L2 candidate vaccines. Arch Virol 2013, 158:2079-2088.
  • [97]Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M: Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012, 37:125-133.
  • [98]Monroy-Garcia A, Gomez-Lim MA, Weiss-Steider B, Hernandez-Montes J, Huerta-Yepez S, Rangel-Santiago JF, Santiago-Osorio E, Mora Garcia Mde L: Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 2014, 159:291-305.
  • [99]Plchova H, Moravec T, Hoffmeisterova H, Folwarczna J, Cerovska N: Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expr Purif 2011, 77:146-152.
  • [100]Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G: A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 2013, 8:e61473.
  • [101]Morgenfeld M, Lentz E, Segretin ME, Alfano EF, Bravo-Almonacid F: Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol Biotechnol 2014, 56:1021-1031.
  • [102]Whitehead M, Ohlschlager P, Almajhdi FN, Alloza L, Marzabal P, Meyers AE, Hitzeroth II, Rybicki EP: Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 2014, 14:367.
  • [103]Ohlschlager P, Pes M, Osen W, Durst M, Schneider A, Gissmann L, Kaufmann AM: An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response. Vaccine 2006, 24:2880-2893.
  • [104]Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD: Eukaryotic protein production in designed storage organelles. BMC Biol 2009, 7:5.
  • [105]Excler JL, Robb ML, Kim JH: HIV-1 vaccines: Challenges and new perspectives. Hum Vaccin Immunother 2014, 10:1734-1746.
  • [106]Chanzu N, Ondondo B: Induction of potent and long-lived antibody and cellular immune responses in the genitorectal mucosa could be the critical determinant of HIV vaccine efficacy. Front Immunol 2014, 5:202.
  • [107]Zhang GG, Rodrigues L, Rovinski B, White KA: Production of HIV-1 p24 protein in transgenic tobacco plants. Mol Biotechnol 2002, 20:131-136.
  • [108]Horn ME, Pappu KM, Bailey MR, Clough RC, Barker M, Jilka JM, Howard JA, Streatfield SJ: Advantageous features of plant-based systems for the development of HIV vaccines. J Drug Target 2003, 11:539-545.
  • [109]Matoba N, Magerus A, Geyer BC, Zhang Y, Muralidharan M, Alfsen A, Arntzen CJ, Bomsel M, Mor TS: A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proc Natl Acad Sci U S A 2004, 101:13584-13589.
  • [110]Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS: Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 2009, 7:129-145.
  • [111]Karasev AV, Foulke S, Wellens C, Rich A, Shon KJ, Zwierzynski I, Hone D, Koprowski H, Reitz M: Plant based HIV-1 vaccine candidate: Tat protein produced in spinach. Vaccine 2005, 23:1875-1880.
  • [112]Shchelkunov SN, Salyaev RK, Pozdnyakov SG, Rekoslavskaya NI, Nesterov AE, Ryzhova TS, Sumtsova VM, Pakova NV, Mishutina UO, Kopytina TV, Hammond RW: Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol Lett 2006, 28:959-967.
  • [113]Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson AL, Rybicki EP: Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 2008, 8:53.
  • [114]Lombardi R, Circelli P, Villani ME, Buriani G, Nardi L, Coppola V, Bianco L, Benvenuto E, Donini M, Marusic C: High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus. BMC Biotechnol 2009, 9:96.
  • [115]Scotti N, Buonaguro L, Tornesello ML, Cardi T, Buonaguro FM: Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches. Expert Rev Vaccines 2010, 9:925-936.
  • [116][http://www.pharma-planta.net/index.php?pg=50] webcite June 29 2011: Pharma-Planta launches a pivotal phase I clinical trial of a plant-derived microbicidal protein. []
  • [117]Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T: High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 2009, 229:1109-1122.
  • [118]Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C: High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011, 85:9334-9345.
  • [119]Jia M, Hong K, Chen J, Ruan Y, Wang Z, Su B, Ren G, Zhang X, Liu Z, Zhao Q, Li D, Peng H, Altfeld M, Walker BD, Yu XG, Shao Y: Preferential CTL targeting of Gag is associated with relative viral control in long-term surviving HIV-1 infected former plasma donors from China. Cell Res 2012, 22:903-914.
  • [120]Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C, Zamarreno J, Bach V, Zuniga R, Perez-Alvarez S, Berger CT, Puertas MC, Martinez-Picado J, Rolland M, Farfan M, Szinger JJ, Hildebrand WH, Yang OO, Sanchez-Merino V, Brumme CJ, Brumme ZL, Heckerman D, Allen TM, Mullins JI, Gomez G, Goulder PJ, Walker BD, Gatell JM, Clotet B, Korber BT, Sanchez J, et al.: Definition of the viral targets of protective HIV-1-specific T cell responses. J Transl Med 2011, 9:208.
  • [121]Chege GK, Burgers WA, Stutz H, Meyers AE, Chapman R, Kiravu A, Bunjun R, Shephard EG, Jacobs WR Jr, Rybicki EP, Williamson AL: Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model. J Virol 2013, 87:5151-5160.
  • [122]Chege GK, Thomas R, Shephard EG, Meyers A, Bourn W, Williamson C, Maclean J, Gray CM, Rybicki EP, Williamson AL: A prime-boost immunisation regimen using recombinant BCG and Pr55(gag) virus-like particle vaccines based on HIV type 1 subtype C successfully elicits Gag-specific responses in baboons. Vaccine 2009, 27:4857-4866.
  • [123]Lindh I, Brave A, Hallengard D, Hadad R, Kalbina I, Strid A, Andersson S: Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine 2014, 32:2288-2293.
  • [124]Kessans SA, Linhart MD, Matoba N, Mor T: Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. Plant Biotechnol J 2013, 11:681-690.
  • [125]Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jiang X: Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 2013, 8:e58724.
  • [126]D'Aoust MA, Couture MM, Lavoie PO, Vezina LP: Virus like particle production in plants. Organization EP ed., vol. WO2012083445 (A1); 2014.
  • [127]Wang BZ, Liu W, Kang SM, Alam M, Huang C, Ye L, Sun Y, Li Y, Kothe DL, Pushko P, Dokland T, Haynes BF, Smith G, Hahn BH, Compans RW: Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J Virol 2007, 81:10869-10878.
  • [128]Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP: A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J 2013, 11:839-846.
  • [129]Thuenemann EC, Lenzi P, Love AJ, Taliansky M, Becares M, Zuniga S, Enjuanes L, Zahmanova GG, Minkov IN, Matic S, Noris E, Meyers A, Hattingh A, Rybicki EP, Kiselev OI, Ravin NV, Eldarov MA, Skryabin KG, Lomonossoff GP: The use of transient expression systems for the rapid production of virus-like particles in plants. Curr Pharm Des 2013, 19:5564-5573.
  • [130]Zientara S, Sanchez-Vizcaino JM: Control of bluetongue in Europe. Vet Microbiol 2013, 165:33-37.
  • [131]Baylis M: Research gaps in understanding how climate change will affect arboviral diseases. Anim Health Res Rev 2013, 14:143-146.
  • [132]Calvo-Pinilla E, Castillo-Olivares J, Jabbar T, Ortego J, de la Poza F, Marin-Lopez A: Recombinant vaccines against bluetongue virus. Virus Res 2014, 182:78-86.
  • [133]Roy P: Genetically engineered structure-based vaccine for bluetongue disease. Vet Ital 2004, 40:594-600.
  • [134]Hewat EA, Booth TF, Roy P: Structure of correctly self-assembled bluetongue virus-like particles. J Struct Biol 1994, 112:183-191.
  • [135]Stewart M, Dubois E, Sailleau C, Breard E, Viarouge C, Desprat A, Thiery R, Zientara S, Roy P: Bluetongue virus serotype 8 virus-like particles protect sheep against virulent virus infection as a single or multi-serotype cocktail immunogen. Vaccine 2013, 31:553-558.
  • [136]Sainsbury F, Thuenemann EC, Lomonossoff GP: pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 2009, 7:682-693.
  • [137]Monath TP: Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine 2013, 31:5321-5338.
  • [138]Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H: Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 2002, 20:3155-3164.
  • [139]Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R: High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 2005, 119:1-14.
  • [140]Loza-Rubio E, Rojas E, Gomez L, Olivera MT, Gomez-Lim MA: Development of an edible rabies vaccine in maize using the Vnukovo strain. Dev Biol (Basel) 2008, 131:477-482.
  • [141]Loza-Rubio E, Rojas-Anaya E, Lopez J, Olivera-Flores MT, Gomez-Lim M, Tapia-Perez G: Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine 2012, 30:5551-5556.
  • [142]Oncu S: Crimean-Congo hemorrhagic fever: an overview. Virol Sin 2013, 28:193-201.
  • [143]Boshra H, Lorenzo G, Busquets N, Brun A: Rift valley fever: recent insights into pathogenesis and prevention. J Virol 2011, 85:6098-6105.
  • [144]Ghiasi SM, Salmanian AH, Chinikar S, Zakeri S: Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol 2011, 18:2031-2037.
  • [145]Lagerqvist N: Rift Valley fever virus vaccine strategies. Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology; 2013.
  • [146]Whaley KJ, Morton J, Hume S, Hiatt E, Bratcher B, Klimyuk V, Hiatt A, Pauly M, Zeitlin L: Emerging antibody-based products. Curr Top Microbiol Immunol 2014, 375:107-126.
  • [147]van Dolleweerd CJ, Teh AY, Banyard AC, Both L, Lotter-Stark HC, Tsekoa T, Phahladira B, Shumba W, Chakauya E, Sabeta CT, Gruber C, Fooks AR, Chikwamba RK, Ma JK: Engineering, expression in transgenic plants and characterisation of e559, a rabies virus-neutralising monoclonal antibody. J Infect Dis 2014, 210:200-208.
  • [148]Senthilingam M: Ebola outbreak: Is it time to test experimental vaccines? , vol. 2014: CNN; 2014.
  • [149]Chen Q, He J, Phoolcharoen W, Mason HS: Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 2011, 7:331-338.
  • [150]Lai H, He J, Engle M, Diamond MS, Chen Q: Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 2012, 10:95-104.
  • [151]Olinger GG Jr, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly M, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley L, Zeitlin L: Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci U S A 2012, 109:18030-18035.
  • [152]Pettitt J, Zeitlin L, Kim do H, Working C, Johnson JC, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly MH, Whaley KJ, Ingram MF, Zovanyi A, Heinrich M, Piper A, Zelko J, Olinger GG: Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 2013, 5:199ra113.
  • [153]Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP: Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014, 514:47-53.
  • [154]Langreth R, Chen C, Nash J, Lauerman J: Ebola Drug Made From Tobacco Plant Saves U.S. Aid Workers. vol. 2014: Bloomberg.com; 2014.
  • [155]Wilson J, Dellorto D: 9 questions about this new Ebola drug. vol. 2014: CNN; 2014.
  • [156]Pollack A: U.S. Will Increase Production of the Ebola Drug ZMapp, but May Not Meet Demand. vol. 2014. New York: New York Times; 2014.
  • [157]McCarthy M: US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ 2014, 349:g5488.
  • [158]Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS: Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 2011, 9:807-816.
  文献评价指标  
  下载次数:5次 浏览次数:15次