期刊论文详细信息
Proteome Science
Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes
Olivier Pertz1  Dagmar Iber2  Ruedi Aebersold4  Erika Fluri1  Katrin Martin1  Alexander Schmidt3  Georgios Fengos2 
[1]Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
[2]ETH Zurich, D-BSSE, Mattenstrasse 26, CH-4058 Basel, Switzerland
[3]University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
[4]University of Zurich, Faculty of Science, Zurich, Switzerland
关键词: Phosphorylation;    Proteomics;    Signaling;    Directional cell migration;    Fibroblast;   
Others  :  816497
DOI  :  10.1186/1477-5956-12-23
 received in 2013-12-19, accepted in 2014-04-25,  发布年份 2014
PDF
【 摘 要 】

Background

Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues.

Results

Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes.

Conclusions

The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

【 授权许可】

   
2014 Fengos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710200154771.pdf 3110KB PDF download
Figure 7. 81KB Image download
Figure 6. 1930KB Image download
Figure 5. 99KB Image download
Figure 4. 164KB Image download
Figure 3. 132KB Image download
Figure 2. 201KB Image download
Figure 1. 224KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Britten RJ, Davidson EH: Gene regulation for higher cells: a theory. Science 1969, 165:349-357.
  • [2]Beato M: Gene regulation by steroid hormones. In Gene Expression. Springer; 1993:43-75.
  • [3]Hunter T: Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995, 80:225-236.
  • [4]Firtel RA, Chung CY: The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 2000, 22:603-615.
  • [5]Janetopoulos C, Firtel RA: Directional sensing during chemotaxis. FEBS Lett 2008, 582:2075-2085.
  • [6]Galbraith CG, Yamada KM, Galbraith JA: Polymerizing actin fibers position integrins primed to probe for adhesion sites. Sci Signal 2007, 315:992.
  • [7]Wehrle-Haller B, Imhof BA: Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 2003, 35:39.
  • [8]Wittmann T, Waterman-Storer CM: Cell motility: can Rho GTPases and microtubules point the way? J Cell Sci 2001, 114:3795-3803.
  • [9]Caswell PT, Norman JC: Integrin trafficking and the control of cell migration. Traffic 2006, 7:14-21.
  • [10]Cho SY, Klemke RL: Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol 2002, 156:725-736.
  • [11]Pertz OC, Wang Y, Yang F, Wang W, Gay LJ, Gristenko MA, Clauss TR, Anderson DJ, Liu T, Auberry KJ: Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network. Proc Natl Acad Sci 2008, 105:1931-1936.
  • [12]Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer 2002, 2:91-100.
  • [13]Grammer TC, Blenis J: Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases. Oncogene 1997, 14:1635-1642.
  • [14]Daaka Y: Mitogenic action of LPA in prostate. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 2002, 1582:265-269.
  • [15]Diella F, Cameron S, Gemünd C, Linding R, Via A, Kuster B, Sicheritz-Ponten T, Blom N, Gibson TJ: Phospho. ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinforma 2004, 5:79. BioMed Central Full Text
  • [16]Galvez T, Teruel MN, Do Heo W, Jones JT, Kim ML, Liou J, Myers JW, Meyer T: siRNA screen of the human signaling proteome identifies the PtdIns (3, 4, 5) P. Genome Biol 2007, 8:R142. BioMed Central Full Text
  • [17]Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009, 37:D412-D416.
  • [18]Rabilloud T: Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 2009, 30:S174-S180.
  • [19]Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M: Spatial regulation of Fus3 MAP kinase activity through a reaction–diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 2007, 9:1319-1326.
  • [20]Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G: Coordination of Rho GTPase activities during cell protrusion. Nature 2009, 461:99-103.
  • [21]Pertz O, Hodgson L, Klemke RL, Hahn KM: Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006, 440:1069-1072.
  • [22]Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R: Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 2007, 4:231-237.
  • [23]Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R: Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 2011, 7:510.
  • [24]Keller A, Nesvizhskii AI, Kolker E, Aebersold R: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002, 74:5383-5392.
  • [25]Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003, 75:4646-4658.
  • [26]Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B: An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 2008, 7:2138-2150.
  文献评价指标  
  下载次数:19次 浏览次数:9次