期刊论文详细信息
Molecular Neurodegeneration
Mutations in LRRK2 potentiate age-related impairment of autophagic flux
Benjamin Wolozin2  Orian Shirihai1  Liqun Liu3  Vivek Gowda3  Peter E. A. Ash3  Shamol Saha3 
[1] Departments of Medicine, Boston University School of Medicine, Boston 02118, MA, USA;Departments of Neurology, Boston University School of Medicine, 72 East Concord St., Boston 02118, MA, USA;Departments of Pharmacology, Boston University School of Medicine, Boston 02118, MA, USA
关键词: Aging;    LC3;    Imaging;    α-synuclein;    LRRK2;    Autophagy;    C. elegans;   
Others  :  1218654
DOI  :  10.1186/s13024-015-0022-y
 received in 2014-09-30, accepted in 2015-06-25,  发布年份 2015
PDF
【 摘 要 】

Autophagy is thought to play a pivotal role in the pathophysiology of Parkinson’s disease, but little is known about how genes linked to PD affect autophagy in the context of aging. We generated lines of C. elegans expressing reporters for the autophagosome and lysosome expressed only in dopaminergic neurons, and examined autophagy throughout the lifespan in nematode lines expressing LRRK2 and α-synuclein. Dopamine neurons exhibit a progressive loss of autophagic function with aging. G2019S LRRK2 inhibited autophagy and accelerated the age-related loss of autophagic function, while WT LRRK2 improved autophagy throughout the life-span. Expressing α-synuclein with G2019S or WT LRRK2 caused age-related synergistic inhibition of autophagy and increase in degeneration of dopaminergic neurons. The presence of α-synuclein particularly accentuated age-related inhibition of autophagy by G2019S LRRK2. This work indicates that LRRK2 exhibits a selective, age-linked deleterious interaction with α-synuclein that promotes neurodegeneration.

【 授权许可】

   
2015 Saha et al.

【 预 览 】
附件列表
Files Size Format View
20150712051110312.pdf 3283KB PDF download
Fig. 6. 45KB Image download
Fig. 5. 68KB Image download
Fig. 4. 79KB Image download
Fig. 3. 79KB Image download
Fig. 2. 48KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008; 22:1427-38.
  • [2]Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006; 73:205-35.
  • [3]Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010; 140:313-26.
  • [4]Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT et al.. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci. 2011; 31:14508-20.
  • [5]Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol. 2011; 124:153-72.
  • [6]Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2011; 8:108-17.
  • [7]Rubinsztein DC, Shpilka T, Elazar Z. Mechanisms of autophagosome biogenesis. Curr Biol. 2012; 22:R29-34.
  • [8]Cookson MR, Bandmann O. Parkinson's disease: insights from pathways. Hum Mol Genet. 2010; 19:R21-7.
  • [9]Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008; 183:795-803.
  • [10]Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS. et al.: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378–83.
  • [11]Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J et al.. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010; 8:e1000298.
  • [12]Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004; 305:1292-5.
  • [13]Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Kalia SK et al.. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A. 2014; 111:2626-31.
  • [14]Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. Mutant LRRK2 Toxicity in Neurons Depends on LRRK2 Levels and Synuclein But Not Kinase Activity or Inclusion Bodies. J Neurosci. 2014; 34:418-33.
  • [15]Plowey ED, Cherra SJ, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008; 105:1048-56.
  • [16]Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O et al.. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet. 2009; 18:4022-34.
  • [17]Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I et al.. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013; 16(4):394-406.
  • [18]Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ et al.. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A. 2010; 107:9879-84.
  • [19]Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H et al.. Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener. 2012; 7:2. BioMed Central Full Text
  • [20]Hinkle KM, Yue M, Behrouz B, Dachsel JC, Lincoln SJ, Bowles EE et al.. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener. 2012; 7:25. BioMed Central Full Text
  • [21]Wu F, Li Y, Wang F, Noda NN, Zhang H. Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem. 2012; 287:29457-67.
  • [22]Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M et al.. Effects of RNA interference of Atg4B on the limited proteolysis of LC3 in PC12 cells and expression of Atg4B in various rat tissues. Autophagy. 2006; 2:200-8.
  • [23]Pivtoraiko VN, Harrington AJ, Mader BJ, Luker AM, Caldwell GA, Caldwell KA et al.. Low-dose bafilomycin attenuates neuronal cell death associated with autophagy-lysosome pathway dysfunction. J Neurochem. 2010; 114:1193-204.
  • [24]Nass R, Hall DH, Miller DM, Blakely RD. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002; 99:3264-9.
  • [25]Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J et al.. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci. 2009; 29:9210-8.
  • [26]Klucken J, Poehler AM, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E et al.. Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. Autophagy. 2012; 8:754-66.
  • [27]Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A. 2008; 105:728-33.
  • [28]Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al.. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2013; 8:445-544.
  • [29]Andraws R, Brown DL. Effect of inhibition of the renin-angiotensin system on development of type 2 diabetes mellitus (meta-analysis of randomized trials). Am J Cardiol. 2007; 99:1006-12.
  • [30]Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL et al.. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci. 2002; 22:8797-807.
  • [31]Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE et al.. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000; 25:239-52.
  • [32]Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X et al.. Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A. 2004; 101:14966-71.
  • [33]Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA et al.. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006; 60:557-69.
  • [34]Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K et al.. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron. 2012; 75:1008-21.
  • [35]Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol. 2007; 17:592-8.
  • [36]Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ et al.. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008; 314:2055-65.
  • [37]Dusonchet J, Li H, Guillily M, Liu M, Stafa K, Derada C, Boon JY, Glauser L, Mamais A, Citro A. et al.: A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum Mol Genet 2014. ePub.
  • [38]Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005; 123:383-96.
  • [39]Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S et al.. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012; 21:511-25.
  • [40]Ferree A, Guillily M, Li H, Smith K, Takashima A, Squillace R et al.. Regulation of physiologic actions of LRRK2: focus on autophagy. Neurodegener Dis. 2012; 10:238-41.
  • [41]Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N et al.. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One. 2011; 6:22354.
  • [42]Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al.. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011; 146:37-52.
  • [43]Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L et al.. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron. 2009; 64:807-27.
  • [44]Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B et al.. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science. 2006; 313:324-8.
  文献评价指标  
  下载次数:61次 浏览次数:20次