期刊论文详细信息
Molecular Neurodegeneration
The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington’s disease model
Shuo Lin2  X. William Yang3  Song Li2  Wei Qin2  Xiaofeng Gu3  Xiao-Hong Lu3  Yesenia Rios-Galdamez1  Matthew B. Veldman1 
[1] Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles 90095, CA, USA;Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;Brain Research Institute, University of California, Los Angeles, Los Angeles 90095, CA, USA
关键词: Zebrafish;    Polyglutamine;    Huntington’s disease;    Huntingtin;    Cre inducible;   
Others  :  1235009
DOI  :  10.1186/s13024-015-0063-2
 received in 2015-03-18, accepted in 2015-11-30,  发布年份 2015
【 摘 要 】

Background

Although the genetic cause for Huntington’s disease (HD) has been known for over 20 years, the mechanisms that cause the neurotoxicity and behavioral symptoms of this disease are not well understood. One hypothesis is that N-terminal fragments of the HTT protein are the causative agents in HD and that peptide sequences adjacent to the poly-glutamine (Q) repeats modify its toxicity. Here we test the function of the N-terminal 17 amino acids (N17) in the context of the exon 1 fragment of HTT in a novel, inducible zebrafish model of HD.

Results

Deletion of N17 coupled with 97Q expansion (mHTT-ΔN17-exon1) resulted in a robust, rapidly progressing movement deficit, while fish with intact N17 and 97Q expansion (mHTT-exon1) have more delayed-onset movement deficits with slower progression. The level of mHTT-ΔN17-exon1 protein was significantly higher than mHTT-exon1, although the mRNA level of each transgene was marginally different, suggesting that N17 may regulate HTT protein stability in vivo. In addition, cell lineage specific induction of the mHTT-ΔN17-exon1 transgene in neurons was sufficient to recapitulate the consequences of ubiquitous transgene expression. Within neurons, accelerated nuclear accumulation of the toxic HTT fragment was observed in mHTT-ΔN17-exon1 fish, demonstrating that N17 also plays an important role in sub-cellular localization in vivo.

Conclusions

We have developed a novel, inducible zebrafish model of HD. These animals exhibit a progressive movement deficit reminiscent of that seen in other animal models and human patients. Deletion of the N17 terminal amino acids of the huntingtin fragment results in an accelerated HD-like phenotype that may be due to enhanced protein stability and nuclear accumulation of HTT. These transgenic lines will provide a valuable new tool to study mechanisms of HD at the behavioral, cellular, and molecular levels. Future experiments will be focused on identifying genetic modifiers, mechanisms and therapeutics that alleviate polyQ aggregation in the nucleus of neurons.

【 授权许可】

   
2015 Veldman et al.

附件列表
Files Size Format View
Fig. 6. 52KB Image download
Fig. 5. 51KB Image download
Fig. 4. 189KB Image download
Fig. 3. 36KB Image download
Fig. 2. 104KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Shannon KM. Huntington’s disease - clinical signs, symptoms, presymptomatic diagnosis, and diagnosis. Handb Clin Neurol. 2011; 100:3-13.
  • [2]Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH et al.. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014; 10:204-216.
  • [3]Walker FO. Huntington’s disease. Lancet. 2007; 369:218-228.
  • [4]Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007; 30:575-621.
  • [5]Vonsattel JP, Keller C, Cortes Ramirez EP. Huntington’s disease - neuropathology. Handb Clin Neurol. 2011; 100:83-100.
  • [6]A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993, 72:971–983.
  • [7]Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM et al.. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science. 1995; 269:407-410.
  • [8]Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet. 1995; 11:155-163.
  • [9]Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J et al.. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 1995; 81:811-823.
  • [10]DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP et al.. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997; 277:1990-1993.
  • [11]Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA et al.. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997; 90:537-548.
  • [12]Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R et al.. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999; 19:2522-2534.
  • [13]Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004; 431:805-810.
  • [14]Peters MF, Nucifora FC, Kushi J, Seaman HC, Cooper JK, Herring WJ et al.. Nuclear targeting of mutant Huntingtin increases toxicity. Mol Cell Neurosci. 1999; 14:121-128.
  • [15]Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M et al.. Nuclear-targeting of mutant huntingtin fragments produces Huntington’s disease-like phenotypes in transgenic mice. Hum Mol Genet. 2004; 13:1599-1610.
  • [16]Truant R, Atwal RS, Burtnik A. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington’s disease. Prog Neurobiol. 2007; 83:211-227.
  • [17]Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N et al.. SUMO modification of Huntingtin and Huntington’s disease pathology. Science. 2004; 304:100-104.
  • [18]Tartari M, Gissi C, Lo Sardo V, Zuccato C, Picardi E, Pesole G et al.. Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Mol Biol Evol. 2008; 25:330-338.
  • [19]Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet. 2007; 16:2600-2615.
  • [20]Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL et al.. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet. 2007; 16:61-77.
  • [21]Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I. Secondary structure of Huntingtin amino-terminal region. Structure. 2009; 17:1205-1212.
  • [22]Michalek M, Salnikov ES, Werten S, Bechinger B. Membrane interactions of the amphipathic amino terminus of huntingtin. Biochemistry. 2013; 52:847-858.
  • [23]Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ et al.. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol. 2009; 16:380-389.
  • [24]Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA et al.. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol. 2009; 16:1279-1285.
  • [25]Lee CY, Cantle JP, Yang XW. Genetic manipulations of mutant huntingtin in mice: new insights into Huntington’s disease pathogenesis. FEBS J. 2013; 280:4382-4394.
  • [26]Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A et al.. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 2009; 187:1083-1099.
  • [27]Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S et al.. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron. 2009; 64:828-840.
  • [28]Gu X, Cantle JP, Greiner ER, Lee CY, Barth AM, Gao F et al.. N17 Modifies Mutant Huntingtin Nuclear Pathogenesis and Severity of Disease in HD BAC Transgenic Mice. Neuron. 2015; 85:726-741.
  • [29]Gray M, Shirasaki DI, Cepeda C, André VM, Wilburn B, Lu XH et al.. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci. 2008; 28:6182-6195.
  • [30]Crook ZR, Housman D. Huntington’s disease: can mice lead the way to treatment? Neuron. 2011; 69:423-435.
  • [31]Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S et al.. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem. 2010; 285:8808-8823.
  • [32]Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK et al.. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A. 2013; 110:2366-2370.
  • [33]Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C et al.. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996; 87:493-506.
  • [34]Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A. 2000; 97:1589-1594.
  • [35]Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A. 1999; 96:179-184.
  • [36]Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci U S A. 2001; 98:13318-13323.
  • [37]Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW et al.. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron. 1998; 21:633-642.
  • [38]Xi Y, Noble S, Ekker M. Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep. 2011; 11:274-282.
  • [39]Schiffer NW, Broadley SA, Hirschberger T, Tavan P, Kretzschmar HA, Giese A et al.. Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem. 2007; 282:9195-9203.
  • [40]Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ et al.. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci. 2005; 25:9152-9161.
  • [41]Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH et al.. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008; 4:295-305.
  • [42]Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS et al.. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007; 236:3088-3099.
  • [43]Tsai SB, Tucci V, Uchiyama J, Fabian NJ, Lin MC, Bayliss PE et al.. Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell. 2007; 6:209-224.
  • [44]Zeng L, Tallaksen-Greene SJ, Wang B, Albin RL, Paulson HL. The de-ubiquitinating enzyme ataxin-3 does not modulate disease progression in a knock-in mouse model of Huntington disease. J Huntingtons Dis. 2013; 2:201-215.
  • [45]Maiuri T, Woloshansky T, Xia J, Truant R. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet. 2013; 22:1383-1394.
  • [46]Sathasivam K, Woodman B, Mahal A, Bertaux F, Wanker EE, Shima DT et al.. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington’s disease (HD) transgenic mice and HD patients. Hum Mol Genet. 2001; 10:2425-2435.
  • [47]Hsiao HY, Chern Y. Targeting glial cells to elucidate the pathogenesis of Huntington’s disease. Mol Neurobiol. 2010; 41:248-255.
  • [48]Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C et al.. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014; 17:513-521.
  • [49]She P, Zhang Z, Marchionini D, Diaz WC, Jetton TJ, Kimball SR et al.. Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington’s disease. Am J Physiol Endocrinol Metab. 2011; 301:E49-61.
  • [50]Rahman A, Ekman M, Shakirova Y, Andersson KE, Mörgelin M, Erjefält JS et al.. Late onset vascular dysfunction in the R6/1 model of Huntington’s disease. Eur J Pharmacol. 2013; 698:345-353.
  • [51]Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC et al.. Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp Neurol. 2013; 250:20-30.
  • [52]Wang N, Gray M, Lu XH, Cantle JP, Holley SM, Greiner E et al.. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med. 2014; 20:536-541.
  • [53]Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK et al.. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000; 227:279-293.
  • [54]Bernardos RL, Raymond PA. GFAP transgenic zebrafish. Gene Expr Patterns. 2006; 6:1007-1013.
  • [55]Ju B, Chong SW, He J, Wang X, Xu Y, Wan H et al.. Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the mylz2 promoter. Dev Dyn. 2003; 227:14-26.
  • [56]Veldman MB, Lin S. Etsrp/Etv2 is directly regulated by Foxc1a/b in the zebrafish angioblast. Circ Res. 2012; 110:220-229.
  • [57]Issa FA, O’Brien G, Kettunen P, Sagasti A, Glanzman DL, Papazian DM. Neural circuit activity in freely behaving zebrafish (Danio rerio). J Exp Biol. 2011; 214:1028-1038.
  • [58]von Hörsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T et al.. Transgenic rat model of Huntington’s disease. Hum Mol Genet. 2003; 12:617-624.
  • [59]Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y et al.. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003; 12:1555-1567.
  • [60]Gu X, Li C, Wei W, Lo V, Gong S, Li SH et al.. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron. 2005; 46:433-444.
  • [61]Gu X, André VM, Cepeda C, Li SH, Li XJ, Levine MS et al.. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener. 2007; 2:8. BioMed Central Full Text
  • [62]Zheng Z, Li A, Holmes BB, Marasa JC, Diamond MI. An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1. J Biol Chem. 2013; 288:6063-6071.
  • [63]Ordway JM, Tallaksen-Greene S, Gutekunst CA, Bernstein EM, Cearley JA, Wiener HW et al.. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell. 1997; 91:753-763.
  • [64]Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). M. Westerfield, Eugene; 1993.
  • [65]Veldman MB, Zhao C, Gomez GA, Lindgren AG, Huang H, Yang H et al.. Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol. 2013; 11:e1001590.
  • [66]Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, Zon LI. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development. 2011; 138:169-177.
  文献评价指标  
  下载次数:18次 浏览次数:6次