期刊论文详细信息
Molecular Neurodegeneration
The transcription factor X-box binding protein-1 in neurodegenerative diseases
Frédéric Checler1  Eric Duplan1  Julie Dunys1 
[1] Université de Nice Sophia Antipolis, Nice, France
关键词: Parkinson’s disease;    Alzheimer’s disease;    Neurodegenerative diseases;    ER stress;    Unfolded Protein Response;    X-box binding protein-1;   
Others  :  1138748
DOI  :  10.1186/1750-1326-9-35
 received in 2014-07-31, accepted in 2014-08-14,  发布年份 2014
PDF
【 摘 要 】

Endoplasmic reticulum (ER) is the cellular compartment where secreted and integral membrane proteins are folded and matured. The accumulation of unfolded or misfolded proteins triggers a stress that is physiologically controlled by an adaptative protective response called Unfolded Protein Response (UPR). UPR is primordial to induce a quality control response and to restore ER homeostasis. When this adaptative response is defective, protein aggregates overwhelm cells and affect, among other mechanisms, synaptic function, signaling transduction and cell survival. Such dysfunction likely contributes to several neurodegenerative diseases that are indeed characterized by exacerbated protein aggregation, protein folding impairment, increased ER stress and UPR activation. This review briefly documents various aspects of the biology of the transcription factor XBP-1 (X-box Binding Protein-1) and summarizes recent findings concerning its putative contribution to the altered UPR response observed in various neurodegenerative disorders including Parkinson’s and Alzheimer’s diseases.

【 授权许可】

   
2014 Dunys et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150320091927523.pdf 337KB PDF download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Hetz C: The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012, 13:89-102.
  • [2]Walter P, Ron D: The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334:1081-1086.
  • [3]Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, Ting JP, Glimcher LH: A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science 1990, 247:1581-1584.
  • [4]Welihinda AA, Tirasophon W, Kaufman RJ: The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 1999, 7:293-300.
  • [5]Shamu CE: Splicing: HACking into the unfolded-protein response. Curr Biol 1998, 8:R121-R123.
  • [6]Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002, 415:92-96.
  • [7]Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL: Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 2006, 281:5852-5860.
  • [8]Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002, 16:452-466.
  • [9]Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001, 107:881-891.
  • [10]Holthuis JC, Menon AK: Lipid landscapes and pipelines in membrane homeostasis. Nature 2014, 510:48-57.
  • [11]Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS: Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009, 186:323-331.
  • [12]Masaki T, Yoshida M, Noguchi S: Targeted disruption of CRE-binding factor TREB5 gene leads to cellular necrosis in cardiac myocytes at the embryonic stage. Biochem Biophys Res Commun 1999, 261:350-356.
  • [13]Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH: Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001, 412:300-307.
  • [14]Iwakoshi NN, Lee AH, Glimcher LH: The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev 2003, 194:29-38.
  • [15]Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, Grusby MJ, Glimcher LH: An essential role in liver development for transcription factor XBP-1. Genes Dev 2000, 14:152-157.
  • [16]Lee AH, Scapa EF, Cohen DE, Glimcher LH: Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008, 320:1492-1496.
  • [17]Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, Davidson NO, Kaufman RJ: IRE1alpha-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 2012, 16:473-486.
  • [18]Kanemoto S, Kondo S, Ogata M, Murakami T, Urano F, Imaizumi K: XBP1 activates the transcription of its target genes via an ACGT core sequence under ER stress. Biochem Biophys Res Commun 2005, 331:1146-1153.
  • [19]Yamamoto K, Suzuki N, Wada T, Okada T, Yoshida H, Kaufman RJ, Mori K: Human HRD1 promoter carries a functional unfolded protein response element to which XBP1 but not ATF6 directly binds. J Biochem 2008, 144:477-486.
  • [20]Sha H, He Y, Chen H, Wang C, Zenno A, Shi H, Yang X, Zhang X, Qi L: The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab 2009, 9:556-564.
  • [21]Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 2007, 27:53-66.
  • [22]Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306:457-461.
  • [23]Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, Fisher SJ, White MF, Biddinger SB, Ozcan U: Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nat Med 2011, 17:356-365.
  • [24]Ueki K, Kadowaki T: The other sweet face of XBP-1. Nat Med 2011, 17:246-248.
  • [25]Franca LM, Freitas LN, Chagas VT, Coelho CF, Barroso WA, Costa GC, Silva LA, Debbas V, Laurindo FR, Paes AM: Mechanisms underlying hypertriglyceridemia in rats with monosodium L-glutamate-induced obesity: evidence of XBP-1/PDI/MTP axis activation. Biochem Biophys Res Commun 2014, 443:725-730.
  • [26]Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y, Man K, Lo CM, Li X, Xu A: Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 2012, 61:1058-1067.
  • [27]Savic S, Ouboussad L, Dickie LJ, Geiler J, Wong C, Doody GM, Churchman SM, Ponchel F, Emery P, Cook GP, Buch MH, Tooze RM, McDermott MF, Buch MH, Tooze RM, McDermott MF: TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes. J Autoimmun 2014, 50:59-66.
  • [28]Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS: XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134:743-756.
  • [29]Tang CH, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, Del Valle JR, Hu CC: Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest 2014, 124:2585-2598.
  • [30]Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH: XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014, 508:103-107.
  • [31]Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L: Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer 2009, 101:1692-1698.
  • [32]Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K, Emi M: Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers. Breast Cancer 2003, 10:301-306.
  • [33]Fujimoto T, Yoshimatsu K, Watanabe K, Yokomizo H, Otani T, Matsumoto A, Osawa G, Onda M, Ogawa K: Overexpression of human X-box binding protein 1 (XBP-1) in colorectal adenomas and adenocarcinomas. Anticancer Res 2007, 27:127-131.
  • [34]Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, Glimcher LH, Hetz C: Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 2012, 21:2245-2262.
  • [35]Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P: The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 2011, 20:2144-2160.
  • [36]Reinhardt S, Schuck F, Grosgen S, Riemenschneider M, Hartmann T, Postina R, Grimm M, Endres K: Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. Faseb J 2013, 28:978-997.
  • [37]Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ, Gwag BJ: Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 2010, 42:386-394.
  • [38]Liu SY, Wang W, Cai ZY, Yao LF, Chen ZW, Wang CY, Zhao B, Li KS: Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer’s disease. CNS Neurosci Ther 2013, 19:229-234.
  • [39]Valdes P, Mercado G, Vidal RL, Molina C, Parsons G, Court FA, Martinez A, Galleguillos D, Armentano D, Schneider BL, Hetz C: Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci U S A 2014, 111:6804-6809.
  • [40]Duplan E, Giaime E, Viotti J, Sevalle J, Corti O, Brice A, Ariga H, Qi L, Checler F, da Costa CA: ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J Cell Sci 2013, 126:2124-2133.
  • [41]Castillo-Carranza DL, Zhang Y, Guerrero-Munoz MJ, Kayed R, Rincon-Limas DE, Fernandez-Funez P: Differential activation of the ER stress factor XBP1 by oligomeric assemblies. Neurochem Res 2012, 37:1707-1717.
  • [42]Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA, Nunan J, Rembach A, Nagley P, Beart PM, Cheema SS, Horne MK: Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 2006, 281:30152-30165.
  • [43]Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH: XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 2009, 23:2294-2306.
  • [44]Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U: The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 2010, 16:429-437.
  • [45]Winnay JN, Boucher J, Mori MA, Ueki K, Kahn CR: A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat Med 2010, 16:438-445.
  • [46]Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, Fu W, Wei FZ, Wang L, Xie D, Zhu WG: XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res 2013, 23:491-507.
  • [47]Shajahan AN, Riggins RB, Clarke R: The role of X-box binding protein-1 in tumorigenicity. Drug News Perspect 2009, 22:241-246.
  • [48]Thorpe JA, Schwarze SR: IRE1alpha controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones 2010, 15:497-508.
  • [49]Munsat TL, Andres PL, Finison L, Conlon T, Thibodeau L: The natural history of motoneuron loss in amyotrophic lateral sclerosis. Neurology 1988, 38:409-413.
  • [50]Huntington’s Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72:971-983.
  • [51]MacMillan JC, Morrison PJ, Nevin NC, Shaw DJ, Harper PS, Quarrell OW, Snell RG: Identification of an expanded CAG repeat in the Huntington’s disease gene (IT15) in a family reported to have benign hereditary chorea. J Med Genet 1993, 30:1012-1013.
  • [52]Ashizawa T, Wong LJ, Richards CS, Caskey CT, Jankovic J: CAG repeat size and clinical presentation in Huntington’s disease. Neurology 1994, 44:1137-1143.
  • [53]Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M, Ryu H, Jung YK: IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 2012, 21:101-114.
  • [54]Duennwald ML, Lindquist S: Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 2008, 22:3308-3319.
  • [55]Zuleta A, Vidal RL, Armentano D, Parsons G, Hetz C: AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease. Biochem Biophys Res Commun 2012, 420:558-563.
  • [56]Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T: Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 2006, 65:348-357.
  • [57]Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper W: The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 2005, 110:165-172.
  • [58]Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W: The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 2009, 174:1241-1251.
  • [59]Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M: Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1999, 1:479-485.
  • [60]Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA: S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441:513-517.
  • [61]Checler F: Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995, 65:1431-1444.
  • [62]Kaneko M, Koike H, Saito R, Kitamura Y, Okuma Y, Nomura Y: Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci 2010, 30:3924-3932.
  • [63]Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA: Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 2002, 22:10690-10698.
  • [64]Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W: Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 2007, 354:707-711.
  • [65]Sado M, Yamasaki Y, Iwanaga T, Onaka Y, Ibuki T, Nishihara S, Mizuguchi H, Momota H, Kishibuchi R, Hashimoto T, Wada D, Kitagawa H, Watanabe TK: Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res 2009, 1257:16-24.
  • [66]Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299:256-259.
  • [67]Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000, 25:302-305.
  • [68]da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, Safe S, Abou-Sleiman PM, Wood NW, Takahashi H, Goldberg MS, Shen J, Checler F: Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat Cell Biol 2009, 11:1370-1375.
  • [69]Sunico CR, Nakamura T, Rockenstein E, Mante M, Adame A, Chan SF, Newmeyer TF, Masliah E, Nakanishi N, Lipton SA: S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease. Mol Neurodegener 2013, 8:29.
  • [70]Checler F, Alves da Costa C: p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2014, 142:99-113.
  文献评价指标  
  下载次数:27次 浏览次数:16次