期刊论文详细信息
Movement Ecology
Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight
Gil Bohrer9  Martin Wikelski4  Roland Kays1  Daniel Bengtsson6  Jonas Waldenström6  Scott H Newman5  John Y Takekawa8  Carolina Proaño4  Sebastian Cruz4  David Cabot7  Eileen C Rees2  Larry Griffin2  Rolf Weinzierl3  Bart Kranstauber4  Kamran Safi4 
[1] School of Natural Resources, North Carolina State University, 3118 Jordan Hall, Raleigh, NC, 27695, USA;Wildfowl & Wetlands Trust, Slimbridge, Gloucestershire, GL2 7BT, UK; , Am Fügsee 29, Seehausen am Staffelsee, 82418, Germany;Department of Biology, University of Konstanz, Konstanz, 78464, Germany;Emergency Center for Transboundary Animal Diseases, Animal Production and Health Division, Food & Agriculture Organization of the United Nations, Rome, 00153, Italy;Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, SE-391 82, Sweden;Environmental Consultancy Services, White Strand, Killadoon, Louisburgh, Westport, Co. Mayo, Ireland;U.S. Geological Survey, Western Ecological Research Center, 505 Azuar Drive, Vallejo, CA, 94592, USA;Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
关键词: Flight speed;    Flight direction;    Measurement error;    Scaling;    Doppler-shift;    Aves;    GPS;    ECMWF;    NOAA;   
Others  :  803025
DOI  :  10.1186/2051-3933-1-4
 received in 2013-01-07, accepted in 2013-05-22,  发布年份 2013
PDF
【 摘 要 】

Background

Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.

Results

We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.

Conclusions

Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

【 授权许可】

   
2013 Safi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708033312161.pdf 2395KB PDF download
Figure 5. 33KB Image download
Figure 4. 42KB Image download
Figure 3. 111KB Image download
Figure 2. 79KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pennycuick CJ: Fifteen Testable Predictions about Bird Flight. Oikos 1978, 30:165.
  • [2]Torre-Bueno J, Larochelle J: The metabolic cost of flight in unrestrained birds. J Exp Biol 1978, 75:223-229.
  • [3]Padian K, Chiappe LM: The origin and early evolution of birds. Biol Rev Camb Philos Soc 1998, 73:1-42.
  • [4]Green M, Alerstam T, Gudmundsson GA, Hedenstrom A, Piersma T: Do Arctic waders use adaptive wind drift? J Avian Biol 2004, 35:305-315.
  • [5]Weber TP, Hedenström A: Optimal stopover decisions under wind influence: the effects of correlated winds. J Theor Biol 2000, 205:95-104.
  • [6]Mandel JT, Bildstein KL, Bohrer G, Winkler DW: Movement ecology of migration in turkey vultures. Proc Natl Acad Sci USA 2008, 105:19102-7.
  • [7]Green M: Is wind drift in migrating barnacle and brent geese, Branta leucopsis and Branta bernicla, adaptive or non-adaptive? Behav Ecol Sociobiol 2001, 50:45-54.
  • [8]Liechti F, Bruderer B: The relevance of wind for optimal migration theory. J Avian Biol 1998, 29:561-568.
  • [9]Alerstam T: Bird flight and optimal migration. Trends Ecol Evol 1991, 6:210-215.
  • [10]Pennycuick CJ, Battley PF: Burning the engine: a time-marching computation of fat and protein consumption in a 5420-km non-stop flight by great knots, Calidris tenuirostris. Oikos 2003, 103:323-332.
  • [11]Ellington CP: Limitations on animal flight performance. J Exp Biol 1991, 160:71-91.
  • [12]Pennycuick C, Klaassen M, Kvist A, Lindstrom A: Wingbeat frequency and the body drag anomaly: Wind-tunnel observations on a thrush nightingale (Luscinia luscinia) and a teal (Anas crecca). J Exp Biol 1996, 199:2757-2765.
  • [13]Tobalske BW, Hedrick TL, Dial KP, Biewener AA: Comparative power curves in bird flight. Nature 2003, 421:363-6.
  • [14]Pennycuick C: Actual and “optimum” flight speeds: field data reassessed. J Exp Biol 1997, 200:2355-2361.
  • [15]Alerstam T, Rosén M, Bäckman J, Ericson PGP, Hellgren O: Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol 2007, 5:e197.
  • [16]Van Loon EE, Shamoun-Baranes J, Bouten W, Davis SL: Understanding soaring bird migration through interactions and decisions at the individual level. J Theor Biol 2011, 270:112-26.
  • [17]Mandel JT, Bohrer G, Winkler DW, Barber DR, Houston CS, Bildstein KL: Migration path annotation: cross-continental study of migration-flight response to environmental conditions. Ecol Appl 2011, 21:2258-2268.
  • [18]Bohrer G, Brandes D, Mandel JT, Bildstein KL, Miller TA, Lanzone M, Katzner T, Maisonneuve C, Tremblay JA: Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol Lett 2012, 15:96-103.
  • [19]Dodge S, Bohrer G, Weinzierl R: MoveBank track annotation project: linking animal movement data with the environment to discover the impact of environmental change in animal migration. In Workshop on GIScience in the Big Data Age In conjunction with the seventh International Conference on Geographic Information Science 2012 (GIScience 2012). Edited by Janowicz K, Keßler C, Kauppinen T, Kolas D, Scheider S. Columbus, OH: GIScience 2012; 2012:35-41.
  • [20]Dodge S, Bohrer G, Weinzierl R, Davidson S, Kays R, Douglas D, Cruz S, Han J, Brandes D, Wikelski M: The Environmental-Data Automated Track Annotation (Env-DATA) system: linking animal tracks with environmental data to facilitate research of external factors effects on movement. Movement Ecology
  • [21]Shamoun-Baranes J, Van Loon E, Liechti F, Bouten W: Analyzing the effect of wind on flight: pitfalls and solutions. J Exp Biol 2007, 210:82-90.
  • [22]Liechti F: Birds: blowin’ by the wind. J Ornithol 2006, 147:202-211.
  • [23]Liechti F, Hedenström A, Alerstam T: Effects of sidewinds on optimal flight speed of birds. J Theor Biol 1994, 170:219-225.
  • [24]Kemp MU, Shamoun-Baranes J, Van Gasteren H, Bouten W, Van Loon EE: Can wind help explain seasonal differences in avian migration speed? J Avian Biol 2010, 41:672-677.
  • [25]McLaren JD, Shamoun-Baranes J, Bouten W: Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines. Behav Ecol 2012, 23:1089-1101.
  • [26]Alerstam T: Optimal bird migration revisited. J Ornithol 2011, 152:5-23.
  • [27]Liechti F: Modelling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. J Avian Biol 1995, 26:330-336.
  • [28]Askew GN, Ellerby DJ: The mechanical power requirements of avian flight. Biol Lett 2007, 3:445-8.
  • [29]Berthold P, Nowak E, Querner U: Satelliten-Telemetrie beim Weißstorch (Ciconia ciconia) auf dem Wegzug — eine Pilotstudie. J Ornithol 1992, 133:155-163.
  • [30]Thorup K, Alerstam T, Hake M, Kjellen N: Can vector summation describe the orientation system of juvenile ospreys and honey buzzards? - An analysis of ring recoveries and satellite tracking. Oikos 2003, 103:350-359.
  • [31]Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fléron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M: Technology on the Move: Recent and Forthcoming Innovations for Tracking Migratory Birds. BioScience 2011, 61:689-698.
  • [32]Kranstauber B, Cameron A, Weinzerl R, Fountain T, Tilak S, Wikelski M, Kays R: The Movebank data model for animal tracking. Environ Model Software 2011, 26:834-835.
  • [33]Kemp MU, Emiel Van Loon E, Shamoun-Baranes J, Bouten W: RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol 2012, 3:65-70.
  • [34]Costa DP, Robinson PW, Arnould JPY, Harrison A-L, Simmons SE, Hassrick JL, Hoskins AJ, Kirkman SP, Oosthuizen H, Villegas-Amtmann S, Crocker DE: Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS. PLoS One 2010, 5:e8677.
  • [35]Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 2011, 137:553-597.
  • [36]Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL: NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 2002, 83:1631-1643.
  • [37]Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D: The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 1996, 77:437-471.
  • [38]Bowlin MS, Bisson I-A, Shamoun-Baranes J, Reichard JD, Sapir N, Marra PP, Kunz TH, Wilcove DS, Hedenström A, Guglielmo CG, Åkesson S, Ramenofsky M, Wikelski M: Grand challenges in migration biology. Integr Comp Biol 2010, 50:261-79.
  • [39]Laube P, Purves RS: How fast is a cow? Cross-Scale Analysis of Movement Data. Trans GIS 2011, 15:401-418.
  • [40]Marcus Rowcliffe J, Carbone C, Kays R, Kranstauber B, Jansen PA: Bias in estimating animal travel distance: the effect of sampling frequency. Methods Ecol Evol 2012, 3:653-662.
  • [41]Postlethwaite CM, Dennis TE: Effects of temporal resolution on an inferential model of animal movement. PLoS One 2013, 8:e57640.
  • [42]Britton ARC, Jones G, Rayner JMV, Boonman AM, Verboom B: Flight performance, echolocation and foraging behaviour in pond bats, Myotis dasycneme (Chiroptera: Vespertilionidae). J Zool 1997, 241:503-522.
  • [43]Kemp MU, Shamoun-Baranes J, Van Loon EE, McLaren JD, Dokter AM, Bouten W: Quantifying flow-assistance and implications for movement research. J Theor Biol 2012, 308:56-67.
  • [44]Wood S: Generalized Additive Models: An Introduction in R. Boca Raton, Florida: Chapman & Hall; 2006.
  文献评价指标  
  下载次数:46次 浏览次数:44次