期刊论文详细信息
Neural Development
AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development
Anjen Chenn4  Maria Sverdlov4  Jing Wang1  Erin R McQuinn2  Julie R Shemezis4  Jianing Zhang3 
[1] Present address: Center for Rare and Neglected Diseases, Galvin Life Science Building, University of Notre Dame, Notre Dame, 46556, USA;Present address: College of Veterinary Medicine and Biomedical Sciences, 1601 Campus Delivery, Colorado State University, Fort Collins, 80523, USA;Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA;Department of Pathology, University of Illinois, 909 S. Wolcott Ave. COMRB 6091, Chicago, IL, 60612, USA
关键词: Neuronal differentiation;    Radial glia;    ventricular zone;    β-catenin;    AKT;    Adherens junctions;   
Others  :  806258
DOI  :  10.1186/1749-8104-8-7
 received in 2012-10-17, accepted in 2013-04-05,  发布年份 2013
PDF
【 摘 要 】

Background

During cerebral cortical development, neural precursor-precursor interactions in the ventricular zone neurogenic niche coordinate signaling pathways that regulate proliferation and differentiation. Previous studies with shRNA knockdown approaches indicated that N-cadherin adhesion between cortical precursors regulates β-catenin signaling, but the underlying mechanisms remained poorly understood.

Results

Here, with conditional knockout approaches, we find further supporting evidence that N-cadherin maintains β-catenin signaling during cortical development. Using shRNA to N-cadherin and dominant negative N-cadherin overexpression in cell culture, we find that N-cadherin regulates Wnt-stimulated β-catenin signaling in a cell-autonomous fashion. Knockdown or inhibition of N-cadherin with function-blocking antibodies leads to reduced activation of the Wnt co-receptor LRP6. We also find that N-cadherin regulates β-catenin via AKT, as reduction of N-cadherin causes decreased AKT activation and reduced phosphorylation of AKT targets GSK3β and β-catenin. Inhibition of AKT signaling in neural precursors in vivo leads to reduced β-catenin-dependent transcriptional activation, increased migration from the ventricular zone, premature neuronal differentiation, and increased apoptotic cell death.

Conclusions

These results show that N-cadherin regulates β-catenin signaling through both Wnt and AKT, and suggest a previously unrecognized role for AKT in neuronal differentiation and cell survival during cortical development.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708091738924.pdf 2235KB PDF download
Figure 8. 84KB Image download
Figure 7. 90KB Image download
Figure 6. 186KB Image download
Figure 5. 80KB Image download
Figure 4. 98KB Image download
Figure 3. 60KB Image download
Figure 2. 663KB Image download
Figure 1. 185KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Gotz M, Huttner WB: The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005, 6:777-788.
  • [2]Fietz SA, Huttner WB: Cortical progenitor expansion, self-renewal and neurogenesis - a polarized perspective. Curr Opin Neurobiol 2011, 21:23-35.
  • [3]Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A: Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 2010, 18:472-479.
  • [4]Stocker AM, Chenn A: Focal reduction of [alpha]E-catenin causes premature differentiation and reduction of [beta]-catenin signaling during cortical development. Dev Biol 2009, 328:66-77.
  • [5]Engelman JA, Luo J, Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006, 7:606-619.
  • [6]Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001, 15:2203-2208.
  • [7]Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VM, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ: Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 2005, 25:1869-1878.
  • [8]Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, Hills LB, Heinzen EL, Hill A, Hill RS, Barry BJ, Bourgeois BF, Riviello JJ, Barkovich AJ, Black PM, Ligon KL, Walsh CA: Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012, 74:41-48.
  • [9]Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG: De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012, 44(8):941-945.
  • [10]Rivière JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, Cytrynbaum C, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GM, Meschino WS, Reggin JD, Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL, Majewski J, Bulman DE, O'Driscoll M, Shendure J, Graham JM Jr, Boycott KM, Dobyns WB, Finding of Rare Disease Genes (FORGE) Canada Consortium: De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012, 44(8):934-940.
  • [11]Tran NL, Adams DG, Vaillancourt RR, Heimark RL: Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 2002, 277:32905-32914.
  • [12]He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, Dirisina R, Porter-Westpfahl KS, Hembree M, Johnson T, Wiedemann LM, Barrett TA, Hood L, Wu H, Li L: PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 2007, 39:189-198.
  • [13]Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, Hood L: Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 2004, 101:15370-15375.
  • [14]Sharma M, Chuang WW, Sun Z: Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 2002, 277:30935-30941.
  • [15]Woodhead GJ, Mutch CA, Olson EC, Chenn A: Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 2006, 26:12620-12630.
  • [16]Chenn A, Walsh CA: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science (New York, NY) 2002, 297:365-369.
  • [17]Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y: The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 2004, 131:2791-2801.
  • [18]Chenn A, Zhang YA, Chang BT, McConnell SK: Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 1998, 11:183-193.
  • [19]Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002, 22:1172-1183.
  • [20]Mutch CA, Schulte JD, Olson E, Chenn A: Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS One 2010, 5:e12376.
  • [21]Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL: Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 2005, 96:346-354.
  • [22]Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schutz G: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999, 23:99-103.
  • [23]Dorsky RI, Sheldahl LC, Moon RT: A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 2002, 241:229-237.
  • [24]Mutch C, Funatsu N, Monuki ES, Chenn A: Beta-catenin signaling levels in progenitors regulate the laminar cell fates of projection neurons. J Neurosci 2009, 29(43):13710-13719.
  • [25]Maher MT, Flozak AS, Stocker AM, Chenn A, Gottardi CJ: Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. J Cell Biol 2009, 186:219-228.
  • [26]Anfuso CD, Lupo G, Romeo L, Giurdanella G, Motta C, Pascale A, Tirolo C, Marchetti B, Alberghina M: Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade. J Lipid Res 2007, 48:782-793.
  • [27]Kondo T, Kinouchi H, Kawase M, Yoshimoto T: Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci Lett 1996, 208:101-104.
  • [28]Di Benedetto A, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, Radice GL, Civitelli R: N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 2010, 123:2640-2648.
  • [29]Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007, 316:1619-1622.
  • [30]Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A: Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 2005, 3:e283.
  • [31]Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P: Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 2009, 4:568-580.
  • [32]Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR: Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002, 22:3161-3173.
  • [33]Moore SF, van den Bosch MT, Hunter RW, Sakamoto K, Poole AW, Hers I: Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. J Biol Chem 2013, 288:3918-3928.
  • [34]Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO: Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 2006, 281:9971-9976.
  • [35]Sinor AD, Lillien L: Akt-1 expression level regulates CNS precursors. J Neurosci 2004, 24:8531-8541.
  • [36]Duronio V: The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 2008, 415:333-344.
  • [37]Mishra R, Barthwal MK, Sondarva G, Rana B, Wong L, Chatterjee M, Woodgett JR, Rana A: Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem 2007, 282:30393-30405.
  • [38]Eom TY, Roth KA, Jope RS: Neural precursor cells are protected from apoptosis induced by trophic factor withdrawal or genotoxic stress by inhibitors of glycogen synthase kinase 3. J Biol Chem 2007, 282:22856-22864.
  • [39]Pacary E, Martynoga B, Guillemot F: Crucial first steps: the transcriptional control of neuron delamination. Neuron 2012, 74:209-211.
  • [40]Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, Morrisey EE, Novitch BG: Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 2012, 74:314-330.
  • [41]Ganzler-Odenthal SI, Redies C: Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 1998, 18:5415-5425.
  • [42]Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N: Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 2007, 10(7):819-827.
  • [43]Albertson R, Doe CQ: Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol 2003, 5:166-170.
  • [44]Bilder D, Perrimon N: Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000, 403:676-680.
  • [45]Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S: Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 2006, 133:1735-1744.
  • [46]Rolls MM, Albertson R, Shih HP, Lee CY, Doe CQ: Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 2003, 163:1089-1098.
  • [47]Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004, 303:1483-1487.
  • [48]Arnsdorf EJ, Tummala P, Jacobs CR: Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One 2009, 4:e5388.
  • [49]Howard S, Deroo T, Fujita Y, Itasaki N: A positive role of cadherin in Wnt/beta-catenin signalling during epithelial-mesenchymal transition. PLoS One 2011, 6:e23899.
  • [50]Casagolda D, Del Valle-Pérez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J, Solanas G, Batlle E, Reynolds AB, Casal JI, de Herreros AG, Duñach M: p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 2010, 123:2621-2631.
  • [51]Del Valle-Perez B, Arques O, Vinyoles M, de Herreros AG, Dunach M: Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol 2011, 31:2877-2888.
  • [52]Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C: Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 2005, 438:867-872.
  • [53]Zhou CJ, Borello U, Rubenstein JL, Pleasure SJ: Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience 2006, 142:1119-1131.
  • [54]Viti J, Gulacsi A, Lillien L: Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J Neurosci 2003, 23:5919-5927.
  • [55]Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT: Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989, 2:1547-1558.
  文献评价指标  
  下载次数:41次 浏览次数:10次