期刊论文详细信息
Molecular Neurodegeneration
Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway
Seija Lehnardt6  Andreas Meisel1  Eckart Schott2  Helmut Kettenmann5  Susanne A Wolf5  Christina Krüger3  Odilo Engel4  Katja Derkow3  Paul Dembny3  Karen Rosenberger3 
[1] Cluster of Excellence NeuroCure, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany;Department of Hepatology and Gastroenterology, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany;Department of Neurology, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany;Center for Stroke Research, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany;Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine, Robert Roessle Str. 10, Berlin, 13125, Germany;Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
关键词: Cerebral ischemia;    Intrathecal injection;    Toll-like receptor;    Heat shock protein 60;    Innate immunity;    Neurodegeneration;   
Others  :  1138544
DOI  :  10.1186/s13024-015-0003-1
 received in 2014-06-05, accepted in 2015-02-03,  发布年份 2015
PDF
【 摘 要 】

Background

Toll-like receptors (TLR) constitute a highly conserved class of receptors through which the innate immune system responds to both pathogen- and host-derived factors. Although TLRs are involved in a wide range of central nervous system (CNS) disorders including neurodegenerative diseases, the molecular events leading from CNS injury to activation of these innate immune receptors remain elusive. The stress protein heat shock protein 60 (HSP60) released from injured cells is considered an endogenous danger signal of the immune system. In this context, the main objective of the present study was to investigate the impact of extracellular HSP60 on the brain in vivo.

Results

We show here that HSP60 injected intrathecally causes neuronal and oligodendrocyte injury in the CNS in vivo through TLR4-dependent signaling. Intrathecal HSP60 results in neuronal cell death, axonal injury, loss of oligodendrocytes, and demyelination in the cerebral cortex of wild-type mice. In contrast both mice lacking TLR4 and the TLR adaptor molecule MyD88 are protected against deleterious effects induced by HSP60. In contrast to the exogenous TLR4 ligand, lipopolysaccharide, intrathecal HSP60 does not induce such a considerable inflammatory response in the brain. In the CNS, endogenous HSP60 is predominantly expressed in neurons and released during brain injury, since the cerebrospinal fluid (CSF) from animals of a mouse stroke model contains elevated levels of this stress protein compared to the CSF of sham-operated mice.

Conclusions

Our data show a direct toxic effect of HSP60 towards neurons and oligodendrocytes in the CNS. The fact that these harmful effects involve TLR4 and MyD88 confirms a molecular pathway mediated by the release of endogenous TLR ligands from injured CNS cells common to many forms of brain diseases that bi-directionally links CNS injury and activation of the innate immune system to neurodegeneration and demyelination in vivo.

【 授权许可】

   
2015 Rosenberger et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150320051806671.pdf 2007KB PDF download
Figure 8. 11KB Image download
Figure 7. 279KB Image download
Figure 6. 95KB Image download
Figure 5. 144KB Image download
Figure 4. 50KB Image download
Figure 3. 54KB Image download
Figure 2. 88KB Image download
Figure 1. 174KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 2004, 4:499-511.
  • [2]Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, et al.: Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001, 276:31332-9.
  • [3]Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al.: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002, 277:15028-34.
  • [4]Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al.: Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004, 279:7370-7.
  • [5]Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al.: The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001, 276:10229-33.
  • [6]Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, et al.: Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002, 298:1025-9.
  • [7]Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al.: Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002, 195:99-111.
  • [8]Johnson GB, Brunn GJ, Kodaira Y, Platt JL: Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002, 168:5233-9.
  • [9]Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, et al.: Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999, 285:736-9.
  • [10]Medzhitov R: Recognition of microorganisms and activation of the immune response. Nature 2007, 449:819-26.
  • [11]McGettrick AF, O’Neill LA: Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis. Br J Haematol 2007, 139:185-93.
  • [12]Chen W, Syldath U, Bellmann K, Burkart V, Kolb H: Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999, 162:3212-9.
  • [13]Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000, 12:1539-46.
  • [14]Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N: Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 2001, 167:4844-52.
  • [15]Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA: Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000, 164:13-7.
  • [16]Flohe SB, Bruggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohe S, et al.: Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 2003, 170:2340-8.
  • [17]Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, et al.: A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 2008, 28:2320-31.
  • [18]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al.: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003, 100:8514-9.
  • [19]Zanin-Zhorov A, Cohen IR: Signaling via TLR2 and TLR4 directly down-regulates T cell effector functions: the regulatory face of danger signals. Frontiers Immunol 2013, 4:211.
  • [20]Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282:2085-8.
  • [21]Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al.: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999, 162:3749-52.
  • [22]Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, et al.: Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999, 189:615-25.
  • [23]Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al.: The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002, 22:2478-86.
  • [24]Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312-8.
  • [25]Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173:3916-24.
  • [26]Ransohoff RM, Brown MA: Innate immunity in the central nervous system. J Clin Invest 2012, 122:1164-71.
  • [27]Jaerve A, Muller HW: Chemokines in CNS injury and repair. Cell Tissue Res 2012, 349:229-48.
  • [28]Hsieh HL, Yang CM: Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res Int 2013, 2013:484613.
  • [29]Kwidzinski E, Bechmann I: IDO expression in the brain: a double-edged sword. J Mol Med 2007, 85:1351-9.
  • [30]Kono H, Rock KL: How dying cells alert the immune system to danger. Nat Rev Immunol 2008, 8:279-89.
  • [31]Mayer MP: Gymnastics of molecular chaperones. Mol Cell 2010, 39:321-31.
  • [32]Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J: Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008, 39:3057-63.
  • [33]Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B: Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res 2009, 1249:9-18.
  • [34]Lehmann SM, Rosenberger K, Kruger C, Habbel P, Derkow K, Kaul D, et al.: Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol 2012, 189:1448-58.
  • [35]Abe K, Kawagoe J, Aoki M, Kogure K, Itoyama Y: Stress protein inductions after brain ischemia. Cell Mol Neurobiol 1998, 18:709-19.
  • [36]Wagstaff MJ, Collaco-Moraes Y, Aspey BS, Coffin RS, Harrison MJ, Latchman DS, et al.: Focal cerebral ischaemia increases the levels of several classes of heat shock proteins and their corresponding mRNAs. Brain Res Mol Brain Res 1996, 42:236-44.
  • [37]Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 2008, 39:1314-20.
  • [38]Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, et al.: Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 2007, 190:28-33.
  • [39]Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, et al.: Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab 2008, 28:1588-96.
  • [40]Lai Y, Stange C, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Brown DS, et al.: Mitochondrial heat shock protein 60 is increased in cerebrospinal fluid following pediatric traumatic brain injury. Dev Neurosci 2006, 28:336-41.
  • [41]Calias P, Banks WA, Begley D, Scarpa M, Dickson P: Intrathecal delivery of protein therapeutics to the brain: a critical reassessment. Pharmacol Ther 2014, 144:114-22.
  • [42]Tsai SY, Markus TM, Andrews EM, Cheatwood JL, Emerick AJ, Mir AK, et al.: Intrathecal treatment with anti-Nogo-A antibody improves functional recovery in adult rats after stroke. Exp Brain Res 2007, 182:261-6.
  • [43]Hoffmann O, Braun JS, Becker D, Halle A, Freyer D, Dagand E, et al.: TLR2 mediates neuroinflammation and neuronal damage. J Immunol 2007, 178:6476-81.
  • [44]Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al.: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012, 15:827-35.
  • [45]Henderson B: Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 2010, 28:1-14.
  • [46]Henderson B, Pockley AG: Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 2010, 88:445-62.
  • [47]Zhang D, Sun L, Zhu H, Wang L, Wu W, Xie J, et al.: Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 2012, 61:1021-35.
  • [48]Da Costa CU, Wantia N, Kirschning CJ, Busch DH, Rodriguez N, Wagner H, et al.: Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol 2004, 34:2874-84.
  • [49]Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, et al.: Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 2010, 15:123-41.
  • [50]Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, et al.: Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 2007, 27:13033-41.
  • [51]Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lu J, et al.: Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 2006, 175:209-15.
  • [52]Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al.: Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 2007, 104:13798-803.
  • [53]Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, et al.: Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 2011, 134:1015-32.
  • [54]Hou YJ, Banerjee R, Thomas B, Nathan C, Garcia-Sastre A, Ding A, et al.: SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J Immunol 2013, 191:875-83.
  • [55]Habich C, Baumgart K, Kolb H, Burkart V: The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 2002, 168:569-76.
  • [56]Habich C, Burkart V: Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci 2007, 64:742-51.
  • [57]Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, Rivest S, et al.: Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 2007, 27:12565-76.
  • [58]Zanin-Zhorov A, Bruck R, Tal G, Oren S, Aeed H, Hershkoviz R, et al.: Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol 2005, 174:3227-36.
  • [59]Hamerman JA, Lanier LL: Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006, 2006:re1.
  • [60]Gao B, Tsan MF: Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 2003, 278:22523-9.
  • [61]Zhang P, Liu MC, Cheng L, Liang M, Ji HL, Fu J: Blockade of LOX-1 prevents endotoxin-induced acute lung inflammation and injury in mice. J Innate Immun 2009, 1:358-65.
  • [62]Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, et al.: The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 2009, 110:284-94.
  • [63]Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191-5.
  • [64]Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine JM, Trotter J: AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia 2001, 34:213-28.
  • [65]Hetze S, Engel O, Romer C, Mueller S, Dirnagl U, Meisel C, et al.: Superiority of preventive antibiotic treatment compared with standard treatment of poststroke pneumonia in experimental stroke: a bed to bench approach. J Cereb Blood Flow Metab 2013, 33:846-54.
  • [66]Rieu I, Powers SJ: Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 2009, 21:1031-3.
  文献评价指标  
  下载次数:33次 浏览次数:9次