期刊论文详细信息
Virology Journal
Expression of interferon-induced antiviral genes is delayed in a STAT1 knockout mouse model of Crimean-Congo hemorrhagic fever
Dennis A Bente2  Adriana M Airo3  Gavin C Bowick1 
[1] Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA;Department of Microbiology & Immunology, 301 University Boulevard, Galveston, TX, 77555-0610, USA;Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
关键词: STAT1;    Signaling;    Animal model;    Interferon;    Crimean Congo hemorrhagic fever;   
Others  :  1154441
DOI  :  10.1186/1743-422X-9-122
 received in 2011-11-23, accepted in 2012-06-19,  发布年份 2012
PDF
【 摘 要 】

Background

Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO).

Findings

Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1.

Conclusions

We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.

【 授权许可】

   
2012 Bowick et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407104431885.pdf 2683KB PDF download
Figure 4. 94KB Image download
Figure 3. 83KB Image download
Figure 2. 129KB Image download
Figure 1. 107KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Whitehouse CA: Crimean-Congo hemorrhagic fever. Antiviral Res 2004, 64(3):145-160.
  • [2]Bradfute SB, Stuthman KS, Shurtleff AC, Bavari S: A STAT-1 knockout mouse model for Machupo virus pathogenesis. Virol J 2011, 8:300. BioMed Central Full Text
  • [3]Bray M: The role of the Type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 2001, 82(Pt 6):1365-1373.
  • [4]Kolokoltsova OA, Yun NE, Poussard AL, Smith JK, Smith JN, Salazar M, Walker A, Tseng CT, Aronson JF, Paessler S: Mice lacking alpha/beta and gamma interferon receptors are susceptible to junin virus infection. J Virol 2010, 84(24):13063-13067.
  • [5]Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E: Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 2004, 78(6):2701-2710.
  • [6]Boshra H, Lorenzo G, Rodriguez F, Brun A: A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR(−/−) mice upon lethal virus challenge. Vaccine 2011, 29(27):4469-4475.
  • [7]Lever MS PT, Steward JA, Eastaugh L, Smither SJ, Taylor C, Salguero FJ, Phillpotts RJ: Lethality and pathogenesis of airborne infection with filoviruses in A129 α/β −/− interferon receptor-deficient mice. J Med Microbiol 2012, 61:8-15.
  • [8]Raymond J, Bradfute S, Bray M: Filovirus infection of STAT-1 knockout mice. J Infect Dis 2011, 204(Suppl 3):S986-S990.
  • [9]Bente DA, Alimonti JB, Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM: Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol 2010, 84(21):11089-11100.
  • [10]Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, et al.: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996, 84(3):431-442.
  • [11]Zambelli F, Pesole G, Pavesi G Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 2009, 37(Web Server issue):W247-W252.
  • [12]Bowick GC, McAuley AJ: Meta-analysis of high-throughput datasets reveals cellular responses following hemorrhagic fever virus infection. Viruses-Basel 2011, 3(5):613-619.
  • [13]Bowick GC, Fennewald SM, Elsom BL, Aronson JF, Luxon BA, Gorenstein DG, Herzog NK: Differential signaling networks induced by mild and lethal hemorrhagic fever virus infections. J Virol 2006, 80(20):10248-10252.
  • [14]Bowick GC, Fennewald SM, Scott EP, Zhang LH, Elsom BL, Aronson JF, Spratt HM, Luxon BA, Gorenstein DG, Herzog NK: Identification of differentially activated cell-signaling networks associated with Pichinde virus pathogenesis by using systems kinomics. J Virol 2007, 81(4):1923-1933.
  • [15]Bowick GC, Spratt HM, Hogg AE, Endsley JJ, Wiktorowicz JE, Kurosky A, Luxon BA, Gorenstein DG, Herzog NK: Analysis of the differential host cell nuclear proteome induced by attenuated and virulent hemorrhagic arenavirus infection. J Virol 2009, 83(2):687-700.
  • [16]Gil MP, Bohn E, O'Guin AK, Ramana CV, Levine B, Stark GR, Virgin HW, Schreiber RD: Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA 2001, 98(12):6680-6685.
  • [17]Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD: A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 2009, 5(10):e1000614.
  • [18]Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E: Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 2005, 175(6):3946-3954.
  • [19]Spath GF, Schlesinger P, Schreiber R, Beverley SM: A novel role for Stat1 in phagosome acidification and natural host resistance to intracellular infection by Leishmania major. PLoS Pathog 2009, 5(4):e1000381.
  • [20]Pasieka TJ, Lu B, Leib DA: Enhanced pathogenesis of an attenuated herpes simplex virus for mice lacking Stat1. J Virol 2008, 82(12):6052-6055.
  • [21]Karst SM, Wobus CE, Lay M, Davidson J: Virgin HWt: STAT1-dependent innate immunity to a Norwalk-like virus. Science 2003, 299(5612):1575-1578.
  • [22]Kato A, Kiyotani K, Kubota T, Yoshida T, Tashiro M, Nagai Y: Importance of the anti-interferon capacity of Sendai virus C protein for pathogenicity in mice. J Virol 2007, 81(7):3264-3271.
  • [23]Perry ST, Buck MD, Lada SM, Schindler C, Shresta S: STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog 2011, 7(2):e1001297.
  • [24]Pasieka TJ, Collins L, O'Connor MA, Chen Y, Parker ZM, Berwin BL, Piwnica-Worms DR, Leib DA: Bioluminescent imaging reveals divergent viral pathogenesis in two strains of Stat1-deficient mice, and in alphassgamma interferon receptor-deficient mice. PLoS One 2011, 6(9):e24018.
  • [25]Andersson I, Bladh L, Mousavi-Jazi M, Magnusson KE, Lundkvist A, Haller O, Mirazimi A: Human MxA protein inhibits the replication of Crimean-Congo hemorrhagic fever virus. J Virol 2004, 78(8):4323-4329.
  • [26]Andersson I, Lundkvist A, Haller O, Mirazimi A: Type I interferon inhibits Crimean-Congo hemorrhagic fever virus in human target cells. J Med Virol 2006, 78(2):216-222.
  • [27]Boyd A, Fazakerley JK, Bridgen A: Pathogenesis of Dugbe virus infection in wild-type and interferon-deficient mice. J Gen Virol 2006, 87(Pt 7):2005-2009.
  文献评价指标  
  下载次数:60次 浏览次数:11次