期刊论文详细信息
Particle and Fibre Toxicology
Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods
Patricia Azambuja3  Nicolas Carels4  Eloi de Souza Garcia3  Marli Maria Lima2  Daniele Pereira de Castro3  Otília Sarquis2  Vanessa de Sousa Rizzo1  Fabio Faria da Mota3  Marcia Gumiel1 
[1] Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil;Laboratório de Ecoepidemiologia da Doença de Chagas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil;Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil;Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
关键词: Pyrosequencing;    Cloning;    PCR;    DGGE;    COI barcoding;    Trypanosoma cruzi;    Gut bacteria;    Peridomestic habitats;    Triatoma pseudomaculata;    Triatoma brasiliensis;   
Others  :  1181784
DOI  :  10.1186/s13071-015-0836-z
 received in 2015-02-10, accepted in 2015-03-31,  发布年份 2015
PDF
【 摘 要 】

Background

Chagas disease is caused by Trypanosoma cruzi, which is transmitted by triatomine vectors. The northeastern region of Brazil is endemic for Chagas disease and has the largest diversity of triatomine species. T. cruzi development in its triatomine vector depends on diverse factors, including the composition of bacterial gut microbiota.

Methods

We characterized the triatomines captured in the municipality of Russas (Ceará) by sequencing the cytochrome c oxidase subunit I (COI) gene. The composition of the bacterial community in the gut of peridomestic Triatoma brasiliensis and Triatoma pseudomaculata was investigated using culture independent methods based on the amplification of the 16S rRNA gene by polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA fragment cloning, Sanger sequencing and 454 pyrosequencing. Additionally, we identified TcI and TcII types of T. cruzi by sequencing amplicons from the gut metagenomic DNA with primers for the mini-exon gene.

Results

Triatomines collected in the peridomestic ecotopes were diagnosed as T. pseudomaculata and T. brasiliensis by comparing their COI sequence with GenBank. The rate of infection by T. cruzi in adult triatomines reached 80% for T. pseudomaculata and 90% for T. brasiliensis. According to the DNA sequences from the DGGE bands, the triatomine gut microbiota was primarily composed of Proteobacteria and Actinobacteria. However, Firmicutes and Bacteroidetes were also detected, although in much lower proportions. Serratia was the main genus, as it was encountered in all samples analyzed by DGGE and 454 pyrosequencing. Members of Corynebacterinae, a suborder of the Actinomycetales, formed the next most important group. The cloning and sequencing of full-length 16S rRNA genes confirmed the presence of Serratia marcescens, Dietzia sp., Gordonia terrae, Corynebacterium stationis and Corynebacterium glutamicum.

Conclusions

The study of the bacterial microbiota in the triatomine gut has gained increased attention because of the possible role it may play in the epidemiology of Chagas disease by competing with T. cruzi. Culture independent methods have shown that the bacterial composition of the microbiota in the guts of peridomestic triatomines is made up by only few bacterial species.

【 授权许可】

   
2015 Gumiel et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150515080542297.pdf 2252KB PDF download
Figure 7. 28KB Image download
Figure 6. 99KB Image download
Figure 5. 48KB Image download
Figure 4. 55KB Image download
Figure 3. 71KB Image download
Figure 2. 22KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]World Health Organization, WHO Media Centre Chagas disease (American trypanosomiasis). http://www.who.int/mediacentre/factsheets/fs340/en/ (2014). Accessed Jan 9th, 2015.
  • [2]Dias JCP. Vigilância epidemiológica em doença de Chagas. Cad Saúde Publica. 2000; 16:43-59.
  • [3]Sarquis O, Borges-Pereira J, Mac Cord JR, Gomes TF, Cabello PH, Lima MM. Epidemiology of Chagas disease in Jaguaruana, Ceará, Brazil. I. Presence of triatomines and index of Trypanosoma cruzi infection in four localities of a rural area. Mem Inst Oswaldo Cruz. 2004; 99:263-70.
  • [4]Gurgel-Gonçalves R, Galvão C, Costa J, Peterson A. Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling. J Trop Med. 2012; 2012:1-15.
  • [5]Valença-Barbosa C, Lima MM, Sarquis O, Bezerra CM, Abad-Franch F. A common Caatinga cactus, Pilosocereus gounellei, is an important ecotope of wild Triatoma brasiliensis populations in the Jaguaribe valley of northeastern Brazil. Am J Trop Med Hyg. 2014; 90:1059-62.
  • [6]Lima MM, Sarquis O, de Oliveira TG, Gomes TF, Coutinho C, Daflon-Teixeira NF et al.. Investigation of Chagas disease in four periurban areas in northeastern Brazil: epidemiologic survey in man, vectors, non-human hosts and reservoirs. Trans R Soc Trop Med Hyg. 2012; 106:143-9.
  • [7]Sarquis O, Carvalho-Costa FA, Toma HK, Georg I, Burgoa MR, Lima MM. Eco-epidemiology of Chagas disease in northeastern Brazil: Triatoma brasiliensis, T. pseudomaculata and Rhodnius nasutus in the sylvatic, peridomestic and domestic environments. Parasitol Res. 2012; 110:1481-5.
  • [8]Bezerra CM, Cavalcanti LP, Souza RC, Barbosa SE, Xavier SC, Jansen AM et al.. Domestic, peridomestic and wild hosts in the transmission of Trypanosoma cruzi in the Caatinga area colonised by Triatoma brasiliensis. Mem Inst Oswaldo Cruz. 2014; 109:887-98.
  • [9]Roellig DM, Yabsley MJ. Infectivity, pathogenicity, and virulence of Trypanosoma cruzi isolates from sylvatic animals and vectors, and domestic dogs from the United States in ICR strain mice and SD strain rats. Am J Trop Med Hyg. 2010; 83:519-22.
  • [10]Espinoza B, Rico T, Sosa S, Oaxaca E, Vizcaino-Castillo A, Caballero ML et al.. Mexican Trypanosoma cruzi T. cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection mode. J Biomed Biotechnol. 2010; 2010:890672.
  • [11]Fernandes O, Santos SS, Cupolillo E, Mendonça B, Derre R, Junqueira AC et al.. A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg. 2001; 95:97-9.
  • [12]Brisse S, Barnabé C, Tybairenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol. 2001; 31:1218-26.
  • [13]Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O et al.. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051-4.
  • [14]Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM et al.. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012; 12:240-53.
  • [15]Araújo CA, Waniek PJ, Jansen AM. TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus. Parasit Vectors. 2014; 7:94.
  • [16]Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE et al.. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS One. 2013; 8:e81663.
  • [17]Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005; 12:568-72.
  • [18]Garcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010; 10:499-505.
  • [19]Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One. 2012; 5:e36591.
  • [20]Varela G, Aparicio A. Intestinal bacteria found in Triatoma and Ornithodoros. Am J Trop Med Hyg. 1951; 31 Suppl 1:381-2.
  • [21]Figueiredo AR, da Silva MAP, Hofer E, Moraes AML, Oliveira PC, Coura JR. Microorganisms of the Triatominae vectors of Trypanosoma cruzi. Microorganismos de triatomíneos vetores do Trypanosoma cruzi. III-Isolamento e caracterização de bactérias e fungos do trato digestivo de P. megistus negativos e positivos para T. cruzi. Mem Inst Oswaldo Cruz. 1990; 85:114.
  • [22]Vallejo GA, Guhl F, Schaub G. Triatominae-Trypanosoma cruzi / T. rangeli. Vector-parasite interactions. Acta Trop. 2009; 110:137-47.
  • [23]Olsen GJ, Woese CR, Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994; 176:1-6.
  • [24]Stursa P, Uhlik O, Kurzawova V, Koubek J, Ionescu M, Strohalm M et al.. Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil. Plant Soil Environ. 2009; 55:389-96.
  • [25]Pidiyar VJ, Jangid K, Patole MS, Shouche YS. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S ribosomal RNA gene analysis. Am J Trop Med Hyg. 2004; 70:597-603.
  • [26]da Mota FF, Marinho LP, Moreira CJC, Lima MM, Mello CB, Garcia ES et al.. Cultivation independent methods reveal differences among bacterial gut microbiota in triatominae vectors of Chagas disease. Plos Negl Trop Dis. 2012; 6:e1631.
  • [27]Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008; 3:e2836.
  • [28]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3:294-9.
  • [29]Lyman DF, Monteiro FA, Escalante AA, Cordon-Rosales C, Wesson DM, Dujardin JP et al.. Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. Am J Trop Med Hyg. 1999; 60:377-86.
  • [30]Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas’ disease. Bull Amer Mus Natur Hist. 1979; 163:123-520.
  • [31]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-10.
  • [32]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, Higgins DG. ClustalW and ClustalX version 2.0. Bioinformatics. 2007; 21:2947-8.
  • [33]Hall TA. BioEdit. A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp. 1999; 41:95-8.
  • [34]Tamura K, Peterson D, Stecher G, Nei M, Kumar S. MEGA5. Molecular evolutionary genetics analysis using maximun likelihood, evolutionary distance and parsimony methods. Mol Biol Evol. 2011; 28:2731-9.
  • [35]Silva MB, Nai GA, Rosa JA. Caracterização biológica e molecular de quatro cepas de Trypanosoma cruzi da doença de Chagas. Rev Pat Trop. 2006; 35:213-26.
  • [36]Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI et al.. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996; 178:5636-43.
  • [37]Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73:5261-7.
  • [38]Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM. Bacterial community fingerprinting of amplified 16S–23S ribosomal DNA and restriction endonuclease analysis (ARDRA). In: Molecular Microbiol Ecology Manual. Akkermans ADL, Elsas JD, Bruyn FJ, editors. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1995: p.1-8.
  • [39]National Institute of Health Common Fund Human Microbiome Project (HMP).http://www.hmpdacc.org/ (2008). Accessed Dec 15th, 2014.
  • [40]Nawrocki EP, Eddy SR. Query-Dependent Banding (QDB) for faster RNA similarity searches. PLoS Comput Biol. 2007; 3:e56.
  • [41]Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27:2194-200.
  • [42]Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al.. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009; 37:D141-5.
  • [43]Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008; 6:2383-400.
  • [44]Coutinho CF, Souza-Santos R, Teixeira NF, Georq I, Gomes TTF, Boia MN et al.. An entomoepidemiological investigation of Chagas disease in the state of Ceará, Northeast Region of Brazil. Cad Saúde Publica. 2014; 30:785-93.
  • [45]Sarquis O, Sposina R, de Oliveira TG, Mac Cord JR, Cabello PH, Borges-Pereira J et al.. Aspects of peridomiciliary ecotopes in rural areas of northeastern Brazil associated to triatomine (Hemiptera, Reduviidae) infestation, vectors of Chagas disease. Mem Inst Oswaldo Cruz. 2006; 101:143-7.
  • [46]Costa J, Almeida CE, Dotson EM, Lins A, Vinhaes M, Silveira AC et al.. The epidemiologic importance of Triatoma brasiliensis as a Chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999. Mem Inst Oswaldo Cruz. 2003; 98:443-9.
  • [47]Diotaiuti L, Faria Filho OF, Carneiro FC, Dias JC, Pires HH, Schofield CJ. Operational aspects of Triatoma brasiliensis control. Cad Saúde Publica. 2000; 16:61-7.
  • [48]Sonoda IV, Dias LS, Bezerra CM, Dias JC, Romanha AJ, Diotaiuti L. Susceptibility of Triatoma brasiliensis from state of Ceará, Northeastern Brazil, to the pyrethroid deltamethrin. Mem Inst Oswaldo Cruz. 2010; 105:348-52.
  • [49]García BA, Moriyama EN, Powell JR. Mitochondrial DNA sequences of triatomines (Hemiptera: Reduviidae): phylogenetic relationships. J Med Entomol. 2001; 38:675-83.
  • [50]Gardim S, Rocha CS, Almeida CE, Takiya DM, da Silva MT, Ambrosio DL et al.. Evolutionary relationships of the Triatoma matogrossensis subcomplex, the endemic Triatoma in Central western Brazil, based on mitochondrial DNA sequences. Am J Trop Med Hyg. 2013; 89:766-74.
  • [51]Gardim S, Almeida CE, Takiya DM, Oliveira J, Araújo RF, Cicarelli RM et al.. Multiple mitochondrial genes of some sylvatic Brazilian Triatoma: non-monophyly of the T. brasiliensis subcomplex and the need for a generic revision in the Triatomini. Infect Genet Evol. 2014; 23:74-9.
  • [52]Sainz AC, Mauro LV, Moriyama EN, García BA. Phylogeny of triatomine vectors of Trypanosoma cruzi suggested by mitochondrial DNA sequences. Genetica. 2004; 121:229-40.
  • [53]de la Fuente AL C, Porcasi X, Noireau F, Diotaiuti L, Gorla DE. The association between the geographic distribution of Triatoma pseudomaculata and Triatoma wygodzinskyi (Hemiptera: Reduviidae) with environmental variables recorded by remote sensors. Infect Genet Evol. 2009; 9:54-61.
  • [54]Macedo AM, Pena SDJ. Genetic variability of Trypanosoma cruzi: implications for the pathogenesis of Chagas disease. Parasitol Today. 1998; 14:119-23.
  • [55]Campbell DA, Sj W, Sturm NR. The determinants of Chagas disease: connecting parasites and hosts genetics. Curr Mol Med. 2004; 4:549-62.
  • [56]Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleela R, Fitzpatrick S et al.. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology. 2009; 136:1509-28.
  • [57]Torres-Montero J, López-Monteon A, Dumonteil E, Ramos-Ligonio A. House infestation dynamics and feeding sources of Triatoma dimidiata in Central Veracruz. Mexico Am J Trop Med Hyg. 2012; 86:677-82.
  • [58]Silva MBA, Barreto AVMS, da Silva HA, Galvão C, Rocha D, Jurberg J et al.. Synanthropic triatomines (Hemiptera, Reduviidae) in the state of Pernambuco, Brazil: geographical distribution and natural Trypanosoma infection rates between 2006 and 2007. Rev Soc Bras Med Trop. 2012; 45:60-65.
  • [59]Câmara AC, Lages-Silva E, Sampaio GH, D’Ávila DA, Chiari E, da Cunha Galvão LM. Homogeneity of Trypanosoma cruzi I, II, and III populations and the overlap of wild and domestic transmission cycles by Triatoma brasiliensis in northeastern Brazil. Parasitol Res. 2013; 112:1543-50.
  • [60]Pacheco RS, de Brito CM, Sarquis O, Pires MQ, Borges-Pereira J, Lima MM. Genetic heterogeneity in Trypanosoma cruzi strains from naturally infected triatomine vectors in northeastern Brazil: epidemiological implications. Biochem Genet. 2005; 43:519-30.
  • [61]Engel P, Moran N. The gut microbiota of insects, diversity in structure and function. FEMS Microbiol Rev. 2013; 37:699-735.
  • [62]Colman DR, Toolson EC, Takcs-Vesbach CD. Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol. 2012; 21(5124):37.
  • [63]Brauman A, Doré J, Eggleton P, Bignell D, Breznak JA, Kane MD. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol. 2001; 35:27-36.
  • [64]Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. Dev Comp Immunol. 2014; 42:111-23.
  • [65]Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA et al.. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors. 2014; 7:232.
  • [66]Alderson G, Ritchie DA, Cappellano C, Cool RH, Ivanova NM, Huddleston AS et al.. Physiology and genetics of antibiotic production and resistance. Res Microbiol. 1993; 144:665-72.
  • [67]Da Mota FF, Gomes EA, Marriel IE, Paiva E, Seldin L. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. J Microbiol Biotechnol. 2008; 18:805-14.
  • [68]Kitagawa W, Hata M, Sekizuka T, Kuroda M, Ishikawa J. Draft genome sequence of Rhodococcus erythropolis JCM 6824, an Aurachin RE antibiotic producer. Genome Announc. 2014; 2:e01026-14.
  • [69]Takeya K, Shimamoto M, Mizuguchi Y. Physicochemical and biological properties of mycobactericin M12 produced by Mycobacterium smegmatis. J Gen Microbiol. 1978; 109:215-23.
  • [70]Pátek M, Hochmannová J, Nesvera J, Stránský J. Glutamicin CBII, a bacteriocin-like substance produced by Corynebacterium glutamicum. Antonie Van Leewenhoek. 1986; 52:129-40.
  • [71]Beard CB, Dotson EM, Pennington PM, Eichler S, Cordon-Rosales C, Durvasula RV. Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol. 2001; 31:621-7.
  • [72]Bernard KA, Wiebe D, Burdz T, Reimer A, Ng B, Singh C et al.. Assingment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stationis comb. Nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate. Int J System Evol Microbiol. 2010; 60:874-9.
  • [73]Grisold AJ, Roll P, Hoenigl M, Feierl G, Vicenzi-Moser R, Marth E. Isolation of Gordonia terrae from a patient with catheter related bacteraemia. J Med Microbiol. 2007; 56:1687-8.
  • [74]Wigglesworth VB. Symbiotic bacteria in a blood sucking insect, Rhodnius prolixus Stal (Hemiptera:Triatomidae). Parasitology. 1936; 28:284-9.
  • [75]Beard CB, Durvasula RV, Richards FF. Bacterial simbiosis in arthropods and the control of disease transmission. Emerg Inf Dis. 1998; 4:581-91.
  • [76]Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E et al.. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2008; 119:94-8.
  • [77]Méndez C, Salas JA. ABC transporters in antibiotic-producing actinomycetes. FEMS Microbiol Lett. 1998; 158:1-8.
  • [78]Jonathan G, Lundgren R, Michael L, Joanne CS. Bacterial communities within digestive tracts of ground beetles (Coleoptera:Carabidae). Annals Entomol Soc America. 2007; 100:275-82.
  • [79]Sant’Anna MRV, Darby AC, Brazil RP, Montoya-Lerma J, Dillon VM, Bates PA et al.. Investigation of the bacterial communities associated with females of Lutzomyia sand fly species from South America. PLoS One. 2012; 7:e42531.
  • [80]Dillon RJ, Webster G, Weightman AJ, Keith CA. Diversity of gut microbiota increases with aging and starvation in the desert locust. Antonie Van Leeuwenhoek. 2010; 97:69-77.
  • [81]Marchini D, Rosetto M, Dallai R, Marri L. Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Curr Microbiol. 2002; 44:120-4.
  • [82]Jones RT, Sanchez LG, Fierer N. A cross taxon analysis of insect associated bacterial diversity. PLoS One. 2013; 8:e61218.
  • [83]Behar A, Yuval B, Jurkevitch E. Enterobacteria mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005; 9:2637-43.
  • [84]Grimont F, Grimont PAD. The genus Serratia. In: Prokaryotes. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. Springer-Verlag, New York; 2006: p.219-24.
  • [85]Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol. 2004; 107:89-96.
  • [86]Genes C, Baquero E, Echeverri F, Maya JD, Triana O. Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasit Vectors. 2011; 4:66.
  • [87]Castro DP, Moraes CS, Garcia ES, Azambuja P. Inhibitory effects of d-mannose on trypanosomatid lysis induced by Serratia marcescens. Exp Parasitol. 2007; 115:200-4.
  • [88]Castro DP, Seabra SH, Garcia ES, de Souza W, Azambuja P. Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol. 2007; 117:201-7.
  • [89]Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol. 2012; 21:6134-51.
  • [90]Eichler S, Schaub GA. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002; 100:17-27.
  • [91]Martinson VG, Moy J, Moran NA. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol. 2012; 78:2830-40.
  • [92]Hypsa V, Dale C. In vitro culture and phylogenetic analysis of “Candidatus Arsenophonus triatominarum” an intracellular bacterium from the triatomine bug, Triatoma infestans. Int J Syst Bacteriol. 1997; 47:1140-4.
  • [93]Espino CI, Gómez T, González G, do Santos MF, Solano J, Sousa O et al.. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol. 2009; 75:547-50.
  • [94]Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol. 2004; 70:4800-6.
  • [95]Yu Z, García-González R, Schanbacher FL, Morrison M. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling methanogens by Archaea-specific PCR and Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol. 2008; 74:889-93.
  文献评价指标  
  下载次数:58次 浏览次数:25次