Respiratory Research | |
Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation | |
Alexander M Sapozhnikov1  Ekaterina A Servuli2  Elena L Bolkhovitina1  Marina A Shevchenko1  | |
[1] Department of Immunology, Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia;Faculty of Postgraduate Education, Pirogov Russian National Research Medical University, Ministry of Health, Ostrovitianov St. 1, 117997 Moscow, Russia | |
关键词: Confocal laser scanning microscopy; Conducting airway; Mucosal dendritic cells; Neutrophils; Aspergillus fumigatus; Allergic airway inflammation; | |
Others : 793052 DOI : 10.1186/1465-9921-14-78 |
|
received in 2013-03-14, accepted in 2013-07-23, 发布年份 2013 | |
【 摘 要 】
Background
Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores.
Methods
Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways.
Results
Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application.
Conclusions
Aspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation.
【 授权许可】
2013 Shevchenko et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705042902316.pdf | 1669KB | download | |
Figure 6. | 46KB | Image | download |
Figure 5. | 183KB | Image | download |
Figure 4. | 140KB | Image | download |
Figure 3. | 154KB | Image | download |
Figure 2. | 137KB | Image | download |
Figure 1. | 51KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Latge JP: The pathobiology of Aspergillus fumigatus. Trends Microbiol 2001, 9(8):382-389.
- [2]Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, Greenberger PA, Kariuki B, Kita H, Kurup VP, et al.: Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012, 129(2):280-291. quiz 292–283
- [3]Porter PC, Roberts L, Fields A, Knight M, Qian Y, Delclos GL, Han S, Kheradmand F, Corry DB: Necessary and sufficient role for T helper cells to prevent fungal dissemination in allergic lung disease. Infect Immun 2011, 79(11):4459-4471.
- [4]Fukushima C, Matsuse H, Fukahori S, Tsuchida T, Kawano T, Senjyu H, Kohno S: Aspergillus fumigatus synergistically enhances mite-induced allergic airway inflammation. Med Sci Monit 2010, 16(7):BR197-202.
- [5]Porter P, Susarla SC, Polikepahad S, Qian Y, Hampton J, Kiss A, Vaidya S, Sur S, Ongeri V, Yang T, et al.: Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi. Mucosal Immunol 2009, 2(6):504-517.
- [6]Palm NW, Rosenstein RK, Medzhitov R: Allergic host defences. Nature 2012, 484(7395):465-472.
- [7]Agarwal R, Aggarwal AN, Gupta D, Jindal SK: Aspergillus hypersensitivity and allergic bronchopulmonary aspergillosis in patients with bronchial asthma: systematic review and meta-analysis. Int J Tuberc Lung Dis 2009, 13(8):936-944.
- [8]Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, et al.: Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009, 460(7259):1117-1121.
- [9]Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F: Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol 2007, 9(2):368-381.
- [10]Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latge JP: Hydrophobins-unique fungal proteins. PLoS Pathog 2012, 8(5):e1002700.
- [11]Fukahori S, Matsuse H, Tsuchida T, Kawano T, Tomari S, Fukushima C, Kohno S: Aspergillus fumigatus regulates mite allergen-pulsed dendritic cells in the development of asthma. Clin Exp Allergy 2010, 40(10):1507-1515.
- [12]Rivera A, Van Epps HL, Hohl TM, Rizzuto G, Pamer EG: Distinct CD4+−T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia. Infect Immun 2005, 73(11):7170-7179.
- [13]Dougherty RH, Fahy JV: Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin Exp Allergy 2009, 39(2):193-202.
- [14]Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM: Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 2009, 200(4):647-656.
- [15]Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M: Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol 2011, 301(5):436-444.
- [16]Bonnett CR, Cornish EJ, Harmsen AG, Burritt JB: Early neutrophil recruitment and aggregation in the murine lung inhibit germination of Aspergillus fumigatus Conidia. Infect Immun 2006, 74(12):6528-6539.
- [17]Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywissen A, Jeron A, Latge JP, Brakhage AA, Gunzer M: Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 2010, 6(4):e1000873.
- [18]Lommatzsch M, Julius P, Kuepper M, Garn H, Bratke K, Irmscher S, Luttmann W, Renz H, Braun A, Virchow JC: The course of allergen-induced leukocyte infiltration in human and experimental asthma. J Allergy Clin Immunol 2006, 118(1):91-97.
- [19]Page K, Lierl KM, Hughes VS, Zhou P, Ledford JR, Wills-Karp M: TLR2-mediated activation of neutrophils in response to German cockroach frass. J Immunol 2008, 180(9):6317-6324.
- [20]Baines KJ, Simpson JL, Scott RJ, Gibson PG: Immune responses of airway neutrophils are impaired in asthma. Exp Lung Res 2009, 35(7):554-569.
- [21]Reichard U, Buttner S, Eiffert H, Staib F, Ruchel R: Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J Med Microbiol 1990, 33(4):243-251.
- [22]Rao GV, Tinkle S, Weissman DN, Antonini JM, Kashon ML, Salmen R, Battelli LA, Willard PA, Hoover MD, Hubbs AF: Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health A 2003, 66(15):1441-1452.
- [23]Veres TZ, Shevchenko M, Krasteva G, Spies E, Prenzler F, Rochlitzer S, Tschernig T, Krug N, Kummer W, Braun A: Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation. Am J Pathol 2009, 174(3):808-817.
- [24]von Garnier C, Wikstrom ME, Zosky G, Turner DJ, Sly PD, Smith M, Thomas JA, Judd SR, Strickland DH, Holt PG, et al.: Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa. J Immunol 2007, 179(9):5748-5759.
- [25]Veres TZ, Voedisch S, Spies E, Valtonen J, Prenzler F, Braun A: Aeroallergen Challenge Promotes Dendritic Cell Proliferation in the Airways. J Immunol 2013, 190(3):897-903.
- [26]Veres TZ, Voedisch S, Spies E, Tschernig T, Braun A: Spatiotemporal and functional behavior of airway dendritic cells visualized by two-photon microscopy. Am J Pathol 2011, 179(2):603-609.
- [27]Gresnigt MS, Joosten LA, Verschueren I, van der Meer JW, Netea MG, Dinarello CA, van de Veerdonk FL: Neutrophil-mediated inhibition of proinflammatory cytokine responses. J Immunol 2012, 189(10):4806-4815.
- [28]Bhakta NR, Woodruff PG: Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev 2011, 242(1):220-232.
- [29]Herz U, Braun A, Ruckert R, Renz H: Various immunological phenotypes are associated with increased airway responsiveness. Clin Exp Allergy 1998, 28(5):625-634.
- [30]Taube C, Dakhama A, Rha YH, Takeda K, Joetham A, Park JW, Balhorn A, Takai T, Poch KR, Nick JA, et al.: Transient neutrophil infiltration after allergen challenge is dependent on specific antibodies and Fc gamma III receptors. J Immunol 2003, 170(8):4301-4309.
- [31]Delayre-Orthez C, de Blay F, Frossard N, Pons F: Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin Exp Allergy 2004, 34(11):1789-1795.
- [32]Peters M, Dudziak K, Stiehm M, Bufe A: T-cell polarization depends on concentration of the danger signal used to activate dendritic cells. Immunol Cell Biol 2010, 88(5):537-544.
- [33]Zemans RL, Colgan SP, Downey GP: Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009, 40(5):519-535.
- [34]Latge JP: Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999, 12(2):310-350.
- [35]Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, Romani L: Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 2002, 168(3):1362-1371.
- [36]Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D, Stern M, Latge JP: Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 2003, 71(2):891-903.
- [37]Krenke R, Grabczak EM: Tracheobronchial manifestations of Aspergillus infections. ScientificWorldJournal 2011, 11:2310-2329.
- [38]Lambrecht BN, Hammad H: Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 2012, 30:243-270.
- [39]Stumbles PA, Upham JW, Holt PG: Airway dendritic cells: co-ordinators of immunological homeostasis and immunity in the respiratory tract. APMIS 2003, 111(7–8):741-755.
- [40]Blank F, Rothen-Rutishauser B, Gehr P: Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 2007, 36(6):669-677.
- [41]Behnsen J, Narang P, Hasenberg M, Gunzer F, Bilitewski U, Klippel N, Rohde M, Brock M, Brakhage AA, Gunzer M: Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog 2007, 3(2):e13.
- [42]Faro-Trindade I, Willment JA, Kerrigan AM, Redelinghuys P, Hadebe S, Reid DM, Srinivasan N, Wainwright H, Lang DM, Steele C, et al.: Characterisation of innate fungal recognition in the lung. PLoS One 2012, 7(4):e35675.