Orphanet Journal of Rare Diseases | |
A diverse array of genetic factors contribute to the pathogenesis of Systemic Lupus Erythematosus | |
Ikechi Okpechi1  Adebowale Adeyemo2  Nicki Tiffin3  | |
[1] Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa;Centre for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD, USA;South African National Bioinformatics Institute/MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa | |
关键词: Disease genes; dsDNA; Apoptosis; Genetic susceptibility; Autoimmunity; Systemic lupus erythematosus; | |
Others : 864163 DOI : 10.1186/1750-1172-8-2 |
|
received in 2012-11-12, accepted in 2013-01-01, 发布年份 2013 | |
【 摘 要 】
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease with variable clinical presentation frequently affecting the skin, joints, haemopoietic system, kidneys, lungs and central nervous system. It can be life threatening when major organs are involved. The full pathological and genetic mechanisms of this complex disease are yet to be elucidated; although roles have been described for environmental triggers such as sunlight, drugs and chemicals, and infectious agents. Cellular processes such as inefficient clearing of apoptotic DNA fragments and generation of autoantibodies have been implicated in disease progression. A diverse array of disease-associated genes and microRNA regulatory molecules that are dysregulated through polymorphism and copy number variation have also been identified; and an effect of ethnicity on susceptibility has been described.
【 授权许可】
2013 Tiffin et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725084237301.pdf | 894KB | download | |
96KB | Image | download | |
83KB | Image | download | |
59KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Rahman A, Isenberg DA: Systemic lupus erythematosus. N Engl J Med 2008, 358(9):929-939.
- [2]Niewold TB, Hua J, Lehman TJ, Harley JB, Crow MK: High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun 2007, 8(6):492-502.
- [3]Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB: Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003, 349(16):1526-1533.
- [4]Pathak S, Mohan C: Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Res Ther 2011, 13(5):241. BioMed Central Full Text
- [5]Kyttaris VC: Systemic lupus erythematosus: from genes to organ damage. Methods Mol Biol 2010, 662:265-283.
- [6]Fessel WJ: Systemic lupus erythematosus in the community: incidence, prevalence, outcome, and first symptoms; the high prevalence in black women. Arch Intern Med 1974, 134:1027-1035.
- [7]Danchenko N, Satia JA, Anthony MS: Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006, 15(5):308-318.
- [8]Tikly M, Navarra SV: Lupus in the developing world–is it any different? Best Pract Res Clin Rheumatol 2008, 22(4):643-655.
- [9]Systemic lupus erythematosus - an update Drug Ther Bull 49(7):81-84.
- [10]Nightingale AL, Farmer RD, de Vries CS: Incidence of clinically diagnosed systemic lupus erythematosus 1992–1998 using the UK General Practice Research Database. Pharmacoepidemiol Drug Saf 2006, 15(9):656-661.
- [11]Somers EC, Thomas SL, Smeeth L, Schoonen WM, Hall AJ: Incidence of systemic lupus erythematosus in the United Kingdom, 1990–1999. Arthritis Rheum 2007, 57(4):612-618.
- [12]Adebajo AO: Low frequency of autoimmune disease in tropical Africa. Lancet 1997, 349(9048):361-362.
- [13]Minaur N, Sawyers S, Parker J, Darmawan J: Rheumatic disease in an Australian aboriginal community in North Queensland Australia. A WHO-ILAR COPCORD survey. J Rheumatol 2004, 31(5):965-972.
- [14]Senna ER, De Barros AL, Silva EO, Costa IF, Pereira LV, Ciconelli RM, Ferraz MB: Prevalence of rheumatic diseases in Brazil: a study using the COPCORD approach. J Rheumatol 2004, 31(3):594-597.
- [15]Molokhia M, McKeigue PM, Cuadrado M, Hughes G: Systemic lupus erythematosus in migrants from west Africa compared with afro-caribbean people in the UK. Lancet 2001, 357(9266):1414-1415.
- [16]Bae SC, Fraser P, Liang MH: The epidemiology of systemic lupus erythematosus in populations of African ancestry: a critical review of the "prevalence gradient hypothesis". Arthritis Rheum 1998, 41(12):2091-2099.
- [17]Molokhia M, McKeigue P: Systemic lupus erythematosus: genes versus environment in high risk populations. Lupus 2006, 15(11):827-832.
- [18]Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN, Peshu N, Watkins NA, Floto RA, Smith KG: Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci U S A 2007, 104(17):7169-7174.
- [19]Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, Alarcon-Riquelme ME, Gallant CJ, Boackle SA, Criswell LA, et al.: Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 2011, 12(4):270-279.
- [20]Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J: Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008, 17(5):371-375.
- [21]Licht R, Dieker JW, Jacobs CW, Tax WJ, Berden JH: Decreased phagocytosis of apoptotic cells in diseased SLE mice. J Autoimmun 2004, 22(2):139-145.
- [22]Bijl M, Reefman E, Horst G, Limburg PC, Kallenberg CG: Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: correlates with decreased serum levels of complement. Ann Rheum Dis 2006, 65(1):57-63.
- [23]Savill J, Dransfield I, Gregory C, Haslett C: A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002, 2(12):965-975.
- [24]Matzinger P: The danger model: a renewed sense of self. Science 2002, 296(5566):301-305.
- [25]Ardoin SP, Pisetsky DS: Developments in the scientific understanding of lupus. Arthritis Res Ther 2008, 10(5):218. BioMed Central Full Text
- [26]Lang KS, Recher M, Junt T, Navarini AA, Harris NL, Freigang S, Odermatt B, Conrad C, Ittner LM, Bauer S, et al.: Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 2005, 11(2):138-145.
- [27]Marshak-Rothstein A: Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006, 6(11):823-835.
- [28]von Landenberg P, Bauer S: Nucleic acid recognizing Toll-like receptors and autoimmunity. Curr Opin Immunol 2007, 19(6):606-610.
- [29]Roth R, Nakamura T, Mamula MJ: B7 costimulation and autoantigen specificity enable B cells to activate autoreactive T cells. J Immunol 1996, 157(7):2924-2931.
- [30]Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS: Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 2006, 4(7):437-447.
- [31]Tveita AA, Rekvig OP, Zykova SN: Increased glomerular matrix metalloproteinase activity in murine lupus nephritis. Kidney Int 2008, 74(9):1150-1158.
- [32]Block SR, Winfield JB, Lockshin MD, D'Angelo WA, Christian CL: Studies of twins with systemic lupus erythematosus. A review of the literature and presentation of 12 additional sets. Am J Med 1975, 59(4):533-552.
- [33]Block SR: A brief history of twins. Lupus 2006, 15(2):61-64.
- [34]Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, Walker A, Mack TM: A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992, 35(3):311-318.
- [35]Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, Pons-Estel BA: Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 2005, 52(4):1138-1147.
- [36]Hochberg MC: The application of genetic epidemiology to systemic lupus erythematosus. J Rheumatol 1987, 14(5):867-869.
- [37]Lawrence JS, Martins CL, Drake GL: A family survey of lupus erythematosus. 1. Heritability. J Rheumatol 1987, 14(5):913-921.
- [38]Deng Y, Tsao BP: Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 2010, 6(12):683-692.
- [39]Risch NJ: Searching for genetic determinants in the new millennium. Nature 2000, 405(6788):847-856.
- [40]Zeggini E, Ioannidis JP: Meta-analysis in genome-wide association studies. Pharmacogenomics 2009, 10(2):191-201.
- [41]Iles MM: What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet 2008, 4(2):e33.
- [42]Altshuler D, Daly M: Guilt beyond a reasonable doubt. Nat Genet 2007, 39(7):813-815.
- [43]Kingsley CB: Identification of causal sequence variants of disease in the next generation sequencing era. Methods Mol Biol 2011, 700:37-46.
- [44]Ramos PS, Williams AH, Ziegler JT, Comeau ME, Guy RT, Lessard CJ, Edberg JC, Zidovetzki R, Criswell LA, Gaffney PM, et al.: Genetic analyses of interferon pathway-related genes reveals multiple new loci associated with systemic lupus erythematosus (SLE). Arthritis Rheum 2011, 63(7):2049-2057.
- [45]Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, et al.: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 2008, 58(1):15-25.
- [46]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25(1):25-29.
- [47]Zhou J, Wu R, High AA, Slaughter CA, Finkelstein D, Rehg JE, Redecke V, Hacker H: A20-binding inhibitor of NF-kappaB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc Natl Acad Sci U S A 2011, 108(44):E998-E1006.
- [48]Yan K, Cao Q, Reilly CM, Young NL, Garcia BA, Mishra N: Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem 2011, 286(33):28833-28843.
- [49]Reilly CM, Regna N, Mishra N: HDAC inhibition in lupus models. Mol Med 2011, 17(5–6):417-425.
- [50]Yu HH, Liu PH, Lin YC, Chen WJ, Lee JH, Wang LC, Yang YH, Chiang BL: Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 2010, 19(10):1219-1228.
- [51]Glazier AM, Nadeau JH, Aitman TJ: Finding genes that underlie complex traits. Science 2002, 298(5602):2345-2349.
- [52]Barnes MR: Navigating the HapMap. Brief Bioinform 2006, 7(3):211-224.
- [53]Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian XX, Tang Y, Lau YL, De Vries N, et al.: A functional variant in microrna-146a promoter modulates its expression and confers disease risk for Systemic Lupus Erythematosus. PLoS Genet 2011, 7(6):e1002128.
- [54]Wong KK, de Leeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, MacAulay C, Ng RT, Brown CJ, Eichler EE, et al.: A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007, 80(1):91-104.
- [55]Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B, Hebert M, Jones KN, Shu Y, Kitzmiller K, et al.: Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007, 80(6):1037-1054.
- [56]Walport MJ: Complement. First of two parts. N Engl J Med 2001, 344(14):1058-1066.
- [57]Ptacek T, Li X, Kelley JM, Edberg JC: Copy number variants in genetic susceptibility and severity of systemic lupus erythematosus. Cytogenet Genome Res 2008, 123(1–4):142-147.
- [58]Thai TH, Christiansen PA, Tsokos GC: Is there a link between dysregulated miRNA expression and disease? Discov Med 2010, 10(52):184-194.
- [59]Dai R, Ahmed SA: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011, 157(4):163-179.
- [60]Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z: The microRNA world: small is mighty. Trends Biochem Sci 2003, 28(10):534-540.
- [61]Davidson-Moncada J, Papavasiliou FN, Tam W: MicroRNAs of the immune system: roles in inflammation and cancer. Ann N Y Acad Sci 2010, 1183:183-194.
- [62]Wahid F, Shehzad A, Khan T, Kim YY: MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 2010, 1803(11):1231-1243.
- [63]Tsitsiou E, Lindsay MA: microRNAs and the immune response. Curr Opin Pharmacol 2009, 9(4):514-520.
- [64]Pauley KM, Cha S, Chan EK: MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009, 32(3–4):189-194.
- [65]Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB: Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 2007, 16(12):939-946.
- [66]Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y: Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 2009, 29(7):749-754.
- [67]Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, Bruner GR, Harley JB, Ojwang JO: Identification of unique microRNA signature associated with lupus nephritis. PLoS One 2010, 5(5):e10344.
- [68]Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010, 184(12):6773-6781.
- [69]Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT: Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 2011, 70(8):1493-1506.
- [70]Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H, Lu Q: MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 2011, 63(5):1376-1386.
- [71]Lashine YA, Seoudi AM, Salah S, Abdelaziz AI: Expression signature of microRNA-181-a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus. Clin Exp Rheumatol 2011, 29(2):351-357.
- [72]Hai-yan W, Yang L, Mei-hong C, Hui Z: Expression of MicroRNA-146a in peripheral blood mononuclear cells in patients with systemic lupus Erythematosus. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2011, 33(2):185-188.
- [73]Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al.: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009, 60(4):1065-1075.
- [74]Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, Li PK, Szeto CC: Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol 2010, 37(12):2516-2522.
- [75]Divekar AA, Dubey S, Gangalum PR, Singh RR: Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 2011, 186(2):924-930.
- [76]Ando Y, Maida Y, Morinaga A, Burroughs AM, Kimura R, Chiba J, Suzuki H, Masutomi K, Hayashizaki Y: Two-step cleavage of hairpin RNA with 5' overhangs by human DICER. BMC Mol Biol 2011, 12:6. BioMed Central Full Text
- [77]Hikami K, Kawasaki A, Ito I, Koga M, Ito S, Hayashi T, Matsumoto I, Tsutsumi A, Kusaoi M, Takasaki Y, et al.: Association of a functional polymorphism in the 3'-untranslated region of SPI1 with systemic lupus erythematosus. Arthritis Rheum 2011, 63(3):755-763.
- [78]Theofilopoulos AN, Dixon FJ: Murine models of systemic lupus erythematosus. Adv Immunol 1985, 37:269-390.
- [79]Morel L: Genetics of SLE: evidence from mouse models. Nat Rev Rheumatol 2010, 6(6):348-357.
- [80]Wakeland EK, Liu K, Graham RR, Behrens TW: Delineating the genetic basis of systemic lupus erythematosus. Immunity 2001, 15(3):397-408.
- [81]Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT: The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011, 39(Database issue):D842-D848.
- [82]Xu Z, Morel L: Genetics of systemic lupus erythematosus: contributions of mouse models in the era of human genome-wide association studies. Discov Med 2010, 10(50):71-78.
- [83]Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA: Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 2010, 5(12):e14302.
- [84]Camon E, Magrane M, Barrell D, et al.: The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 2004, 32(Database issue):D262-6.
- [85]Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 2004, 20(9):1464-5.
- [86]Zhao X, Tang Y, Qu B, et al.: MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010, 62(11):3425-35.