期刊论文详细信息
BMC Systems Biology
Disentangling function from topology to infer the network properties of disease genes
Mona Singh2  Dario Ghersi1 
[1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA;Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
关键词: Gene ontology;    Functional bias;    Networks;    Disease genes;   
Others  :  1143228
DOI  :  10.1186/1752-0509-7-5
 received in 2012-10-22, accepted in 2013-01-04,  发布年份 2013
PDF
【 摘 要 】

Background

The topological features of disease genes within interaction networks are the subject of intense study, as they shed light on common mechanisms of pathology and are useful for uncovering additional disease genes. Computational analyses typically try to uncover whether disease genes exhibit distinct network features, as compared to all genes.

Results

We demonstrate that the functional composition of disease gene sets is an important confounding factor in these types of analyses. We consider five disease sets and show that while they indeed have distinct topological features, they are also enriched in functions that a priori exhibit distinct network properties. To address this, we develop a computational framework to assess the network properties of disease genes based on a sampling algorithm that generates control gene sets that are functionally similar to the disease set. Using our function-constrained sampling approach, we demonstrate that for most of the topological properties studied, disease genes are more similar to sets of genes with similar functional make-up than they are to randomly selected genes; this suggests that these observed differences in topological properties reflect not only the distinguishing network features of disease genes but also their functional composition. Nevertheless, we also highlight many cases where disease genes have distinct topological properties even when accounting for function.

Conclusions

Our approach is an important first step in extracting the residual topological differences in disease genes when accounting for function, and leads to new insights into the network properties of disease genes.

【 授权许可】

   
2013 Ghersi and Singh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329023055298.pdf 1399KB PDF download
Figure 4. 122KB Image download
Figure 3. 91KB Image download
Figure 2. 160KB Image download
Figure 1. 14KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL: The human disease network. Proc Natl Acad Sci USA 2007, 104(21):8685-90.
  • [2]Barabasi AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [3]Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458(7239):719-24.
  • [4]Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437(7062):1173-8.
  • [5]Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE: A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122(6):957-68.
  • [6]Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart I, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007, 3:89.
  • [7]Zhu X, Gerstein M, Snyder M: Getting connected: analysis and principles of biological networks. Genes Dev 2007, 21:1010-1024.
  • [8]Ideker T, Sharan R: Protein networks in disease. Genome Res 2008, 18(4):644-52.
  • [9]Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402(6761 Suppl):C47-52.
  • [10]Rives AW, Galitski T: Modular organization of cellular networks. Proc Natl Acad Sci USA 2003, 100(3):1128-1133. [Rives, Alexander W Galitski, Timothy Research Support, Non-U.S. Govt United States Proceedings of the National Academy of Sciences of the United States of America Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1128-33. Epub 2003 Jan 21.]
  • [11]Spirin V, Mirny LA: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 2003, 100(21):12123.
  • [12]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2. BioMed Central Full Text
  • [13]Pereira-Leal J, Enright AJ, Ouzounis CA: Detection of functional modules from protein interaction networks. Proteins 2004, 54:49-57.
  • [14]Song J, Singh M: How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics 2009, 25(23):3143-3150.
  • [15]Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-2.
  • [16]Hahn MW, Kern AD: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 2005, 22(4):803-6.
  • [17]Zotenko E, Mestre J, O’Leary DP, Przytycka TM: Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 2008, 4(8):e1000140.
  • [18]Feldman I, Rzhetsky A, Vitkup D: Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci USA 2008, 105(11):4323-8.
  • [19]Jonsson PF, Bates PA: Global topological features of cancer proteins in the human interactome. Bioinformatics 2006, 22(18):2291-7.
  • [20]Rambaldi D, Giorgi FM, Capuani F, Ciliberto A, Ciccarelli FD: Low duplicability and network fragility of cancer genes. Trends Genet 2008, 24(9):427-30.
  • [21]Xu J, Li Y: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 2006, 22(22):2800-5.
  • [22]Cai JJ, Borenstein E, Petrov DA: Broker genes in human disease. Genome Biol Evol 2010, 2:815-825.
  • [23]Amberger J, Bocchini CA, Scott AF, Hamosh A: McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 2009, 37(Database issue):D793—6.
  • [24]Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-Pons J, Furney SJ, Lopez-Bigas N: IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 2010, 7(2):92-3.
  • [25]Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ: Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 2007, 23(13):222-9.
  • [26]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34(Database issue):D535—9.
  • [27]Newman MEJ: The structure and function of complex networks. SIAM REVIEW 2003, 45:167-256.
  • [28]Gillis J, Pavlidis P: The impact of multifunctional genes on ”guilt by association” analysis. PLoS One 2011, 6(2):e17258.
  • [29]Wachi S, Yoneda K, Wu R: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005, 21(23):4205-8.
  • [30]Bossi A, Lehner B: Tissue specificity and the human protein interaction network. Mol Syst Biol 2009, 5:260.
  • [31]Patil A, Nakai K, Nakamura H: HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 2011, 39:D744.
  • [32]Brito GC, Andrews DW: Removing bias against membrane proteins in interaction networks. BMC Syst Biol 2011, 5:169. BioMed Central Full Text
  • [33]Milenkovic T, Memisevic V, Ganesan AK, Przulj N: Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J R Soc Interface 2010, 7(44):423-37.
  • [34]Erten S, Bebek G, Koyuturk M: Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. J Comput Biol 2011, 18(11):1561-74.
  • [35]Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Maryen P, Hassan B, Carmeliet P, Moreau Y: Gene prioritization through genomic data fusion. Nat Biotechnol 2006, 24:537-544.
  • [36]Radivojac P, Peng K, Clark WT, Peters BJ, Mohan A, Boyle SM, Mooney SD: An integrated approach to inferring gene-disease associations in humans. Proteins 2008, 72(3):1030-7.
  • [37]Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: BIND–The Biomolecular Interaction Network Database. Nucleic Acids Res 2001, 29:242-5.
  • [38]Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13(10):2363-71.
  • [39]Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A, Teague JW, Stratton MR, Futreal PA: COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 2010, 38(Database issue):D652—D657.
  • [40]Network TCGAR: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455(7216):1061-8.
  • [41]Watts DJ, Strogatz SH: Collective dynamics of ’small-world’ networks. Nature 1998, 393(6684):440-2.
  • [42]Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal 2006. Complex Systems 1695, http://igraph.sf.net webcite
  • [43]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-9.
  文献评价指标  
  下载次数:38次 浏览次数:5次