期刊论文详细信息
BMC Systems Biology
Modelling human protein interaction networks as metric spaces has potential in disease research and drug target discovery
Junaid Gamieldien1  Eric C Mwambene2  Emad Fadhal1 
[1] South African National Bioinformatics Institute/ MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville 7530, South Africa;Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville 7530, South Africa
关键词: Disease genes;    Essential proteins;    Topological centrality;    Core-periphery structure;    Metric spaces;    Drug discovery;    Protein interaction networks;   
Others  :  864953
DOI  :  10.1186/1752-0509-8-68
 received in 2014-02-07, accepted in 2014-06-04,  发布年份 2014
PDF
【 摘 要 】

Background

We have recently shown by formally modelling human protein interaction networks (PINs) as metric spaces and classified proteins into zones based on their distance from the topological centre that hub proteins are primarily centrally located. We also showed that zones closest to the network centre are enriched for critically important proteins and are also functionally very specialised for specific ‘house keeping’ functions. We proposed that proteins closest to the network centre may present good therapeutic targets. Here, we present multiple pieces of novel functional evidence that provides strong support for this hypothesis.

Results

We found that the human PINs has a highly connected signalling core, with the majority of proteins involved in signalling located in the two zones closest to the topological centre. The majority of essential, disease related, tumour suppressor, oncogenic and approved drug target proteins were found to be centrally located. Similarly, the majority of proteins consistently expressed in 13 types of cancer are also predominantly located in zones closest to the centre. Proteins from zones 1 and 2 were also found to comprise the majority of proteins in key KEGG pathways such as MAPK-signalling, the cell cycle, apoptosis and also pathways in cancer, with very similar patterns seen in pathways that lead to cancers such as melanoma and glioma, and non-neoplastic diseases such as measles, inflammatory bowel disease and Alzheimer’s disease.

Conclusions

Based on the diversity of evidence uncovered, we propose that when considered holistically, proteins located centrally in the human PINs that also have similar functions to existing drug targets are good candidate targets for novel therapeutics. Similarly, since disease pathways are dominated by centrally located proteins, candidates shortlisted in genome scale disease studies can be further prioritized and contextualised based on whether they occupy central positions in the human PINs.

【 授权许可】

   
2014 Fadhal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726022015266.pdf 2656KB PDF download
96KB Image download
108KB Image download
106KB Image download
121KB Image download
【 图 表 】

【 参考文献 】
  • [1]Ideker T, Krogan NJ: Differential network biology. Mol Syst Biol 2012, 8(565):565. [http://www.nature.com/doifinder/10.1038/msb.2011.99 webcite]
  • [2]Souiai O, Becker E, Prieto C, Benkahla A, De Las Rivas J, Brun C: Functional integrative levels in the human interactome recapitulate organ organization. PLoS ONE 2011, 6(7):10. [http://dx.plos.org/10.1371/journal.pone.0022051 webcite]
  • [3]Sear R: Interactions in protein solutions. Curr Opin Colloid Interface Sci 2006, 11:35-39. [http://linkinghub.elsevier.com/retrieve/pii/S1359029405000610 webcite]
  • [4]Park J, Lappe M, Teichmann SA: Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. J Mol Biol 2001, 307(3):929-938. [http://www.ncbi.nlm.nih.gov/pubmed/11273711 webcite]
  • [5]Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402(6761 Suppl):C47-52. [http://www.ncbi.nlm.nih.gov/pubmed/10591225 webcite]
  • [6]Ouzounis CA, Karp PD: Global properties of the metabolic map of Escherichia coli. Genome Res 2000, 10(4):568-576. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=310896&tool=pmcentrez&rendertype=abstract webcite]
  • [7]McAdams HH, Arkin A: Gene regulation: Towards a circuit engineering discipline. Curr Biol 2000, 10(8):R318-R320. [http://linkinghub.elsevier.com/retrieve/pii/S0960982200004401 webcite]
  • [8]Elowitz MB, Leibler S: A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403(6767):335-338. [http://dx.doi.org/10.1038/35002125 webcite]
  • [9]Savageau MA: Design principles for elementary gene circuits: Elements, methods, and examples. Chaos Woodbury Ny 2001, 11:142-159. [http://www.ncbi.nlm.nih.gov/pubmed/12779449 webcite]
  • [10]Bolouri H, Davidson EH: Modeling transcriptional regulatory networks. BioEssays 2002, 24(12):1118-1129. [http://www.ncbi.nlm.nih.gov/pubmed/12447977 webcite]
  • [11]Hasty J, McMillen D, Isaacs F, Collins JJ: Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2001, 2:268-279.
  • [12]Guet CC, Elowitz MB, Hsing W, Leibler S: Combinatorial synthesis of genetic networks. Science 2002, 296(5572):1466-1470. [http://www.ncbi.nlm.nih.gov/pubmed/12029133 webcite]
  • [13]Newman MEJ: The structure and function of complex networks. SIAM Rev 2003, 45(2):58. [http://arxiv.org/abs/cond-mat/0303516 webcite]
  • [14]Spirin V, Mirny LA: Protein complexes and functional modules in molecular networks. Proc Nat Acad Sci USA 2003, 100(21):12123-12128. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=218723&tool=pmcentrez&rendertype=abstract webcite]
  • [15]Zaki N, Berengueres J, Efimov D: Detection of protein complexes using a protein ranking algorithm. Proteins 2012, 80(10):2459-68. [http://www.ncbi.nlm.nih.gov/pubmed/22685080 webcite]
  • [16]Zaki N, Efimov D, Berengueres J: Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics 2013, 14:163. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3680028&tool=pmcentrez&rendertype=abstract webcite]
  • [17]Kar G, Gursoy A, Keskin O: Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 2009, 5(12):e1000601.
  • [18]Koyutürk M, Szpankowski W, Grama A: Assessing significance of connectivity and conservation in protein interaction networks. J Comput Biol 2007, 14(6):747-764.
  • [19]Sen TZ, Kloczkowski A, Jernigan RL: Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinformatics 2006, 7:355. [http://www.biomedcentral.com/1471-2105/12/409 webcite]
  • [20]Karimpour-Fard A, Leach SM, Hunter LE, Gill RT: The topology of the bacterial co-conserved protein network and its implications for predicting protein function. BMC Genomics 2008, 9:313. [http://www.ncbi.nlm.nih.gov/pubmed/18590549 webcite]
  • [21]Pierre S, Scholich K: Toponomics: studying protein-protein interactions and protein networks in intact tissue. Mol Biosyst 2010, 6(4):641-647. [http://www.ncbi.nlm.nih.gov/pubmed/20237641 webcite]
  • [22]Jeong H, Mason S, Barabasi A, Oltvai Z: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42. [http://www.ncbi.nlm.nih.gov/pubmed/11333967 webcite]
  • [23]Zotenko E, Mestre J, O’Leary D, Przytycka T: Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 2008, 4(8):e1000140.
  • [24]He X, Zhang J: Why do hubs tend to be essential in protein networks? PLoS Genet 2006, 2(6):e88.
  • [25]AlvarezHamelin JI, DallAsta L, Barrat A, Vespignani A: k-core decomposition: a tool for the visualization of large scale networks. World Wide Web Internet Web Inform Syst 2005., abs/cs/050[http://arxiv.org/abs/cs/0504107 webcite]
  • [26]Dickerson JE, Zhu A, Robertson DL, Hentges KE: Defining the Role of Essential Genes in Human Disease. PLoS ONE 2011, 6(11):e27368. [http://dx.doi.org/10.1371/journal.pone.0027368 webcite]
  • [27]Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL: The human disease network. Proc Nat Acad Sci USA 2007, 104(21):8685-8690. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1885563&tool=pmcentrez&rendertype=abstract webcite]
  • [28]Chavali S, Barrenas F, Kanduri K, Benson M: Network properties of human disease genes with pleiotropic effects. BMC Syst Biol 2010, 4:78. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2892460&tool=pmcentrez&rendertype=abstract webcite]
  • [29]Hwang S, Son SW, Kim SC, Kim YJ, Jeong H, Lee D: A protein interaction network associated with asthma. J Theor Biol 2008, 252(4):722-731. [http://www.ncbi.nlm.nih.gov/pubmed/18395227 webcite]
  • [30]Vinogradov AE: Modularity of cellular networks shows general center-periphery polarization. Bioinformatics 2008, 24(24):2814-2817. [http://www.ncbi.nlm.nih.gov/pubmed/18953046 webcite]
  • [31]Zhu M, Gao L, Li X, Liu Z: Identifying drug-target proteins based on network features. Sci China Series C Life Sci Chin Acad Sci 2009, 52(4):398-404. [http://www.ncbi.nlm.nih.gov/pubmed/19381466 webcite]
  • [32]Fadhal E, Gamieldien J, Mwambene EC: Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst Biol 2014, 8:6.
  • [33]Wu G, Feng X, Stein L: A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010, 11(5):R53.
  • [34]Li L, Tibiche C, Fu C, Kaneko T, Moran MF, Schiller MR, Li SS, Wang E: The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res 2012, 22(7):1222-1230.
  • [35]Awan A, Bari H, Yan F, Moksong S, Yang S, Chowdhury S, Cui Q, Yu Z, Purisima EO, Wang E: Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst Biol 2007, 1(5):292-297.
  • [36]Bandyopadhyay S, Chiang CY, Srivastava J, Gersten M, White S, Bell R, Kurschner C, Martin CH, Smoot M, Sahasrabudhe S, Barber DL, Chanda SK, Ideker T: A human MAP kinase interactome. Nat Methods 2010, 7(10):801-5. [http://www.ncbi.nlm.nih.gov/pubmed/20936779 webcite]
  • [37]Sawyers C: Targeted cancer therapy. Nature 2004, 432(7015):294-7. [http://www.ncbi.nlm.nih.gov/pubmed/15549090 webcite]
  • [38]Pharmaceuticals A, Pharmaceuticals K: Signal transduction as a drug-discovery platform Mapping the key signaling molecules in biochemical pathways will be central. Nature Biotechnol 2000, VOL 18(3):37-39.
  • [39]Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M, Felix V, Feng G, Kibbe WA: Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res 2012, 40(Database issue):D940-6. []
  • [40]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW: The Cancer genome landscapes. Science New York NY 2013, 339(6127):1546-58. [http://www.ncbi.nlm.nih.gov/pubmed/23539594 webcite]
  • [41]Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Liu X, Zhang J, Han B, Zhang P, Chen Y: Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res 2012, 40(Database issue):D1128-36. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3245130&tool=pmcentrez&rendertype=abstract webcite]
  • [42]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38(suppl 1):D355-D360.
  文献评价指标  
  下载次数:20次 浏览次数:31次