期刊论文详细信息
Virology Journal
Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain
Man Ki Song4  Cecil Czerkinsky4  Jun Chang3  Dong Wook Kim2  Cheol-Heui Yun1  Huan Huu Nguyen4  Konrad Stadler4  Byoung-Shik Shim1 
[1] Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, and the Center for Agricultural Biomaterials, and Center for Food Safety and Toxicology, Seoul National University, Seoul, 151-921, Republic of Korea;Department of Pharmacy, College of Pharmacy, Hanyang University, Kyeonggi-do, 426-791, Republic of Korea;College of Pharmacy, Ewha Womans University, 11-1 Dae-Hyun Dong, Seo-Dae-Mun Gu, Seoul, 120-750, Republic of Korea;Laboratory Sciences Division, International Vaccine Institute, Seoul, 151-919, Republic of Korea
关键词: IgA;    T cell;    Mucosa;    Severe acute respiratory syndrome;    Sublingual administration;    Recombinant adenovirus;   
Others  :  1153722
DOI  :  10.1186/1743-422X-9-215
 received in 2012-03-13, accepted in 2012-09-19,  发布年份 2012
PDF
【 摘 要 】

Background

Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs) infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S) (rADV-S) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV.

Results

Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n.) administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb.

Conclusion

Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.

【 授权许可】

   
2012 Shim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407100343714.pdf 1897KB PDF download
Figure 4. 143KB Image download
Figure 3. 27KB Image download
Figure 2. 32KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Osek J, Truszczynski M: [Mucosal immunity with implications for use in developing a new generation of vaccines]. Postepy Hig Med Dosw 1995, 49:469-486.
  • [2]Holmgren J, Czerkinsky C: Mucosal immunity and vaccines. Nat med 2005, 11:S45-S53.
  • [3]See R, Zakhartchouk A, Petric M, Lawrence D, Mok C, Hogan R, Rowe T, Zitzow L, Karunakaran K, Hitt M: Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol 2006, 87:641-650.
  • [4]Armstrong ME, Lavelle EC, Loscher CE, Lynch MA, Mills KH: Proinflammatory responses in the murine brain after intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in intranasal vaccines. J Infect Dis 2005, 192:1628-1633.
  • [5]Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR: A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 2002, 20:2431-2438.
  • [6]van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR: Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 2000, 165:4778-4782.
  • [7]Lemiale F, Kong W, Akyurek L, Ling X, Huang Y, Chakrabarti B, Eckhaus M, Nabel G: Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol 2003, 77:10078-10087.
  • [8]Tims T, Briggs DJ, Davis RD, Moore SM, Xiang Z, Ertl HC, Fu ZF: Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine 2000, 18:2804-2807.
  • [9]Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ: Development of a preventive vaccine for Ebola virus infection in primates. Nature 2000, 408:605-609.
  • [10]Xiang ZQ, Yang Y, Wilson JM, Ertl HC: A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 1996, 219:220-227.
  • [11]Liu RY, Wu LZ, Huang BJ, Huang JL, Zhang YL, Ke ML, Wang JM, Tan WP, Zhang RH, Chen HK, et al.: Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats. Virus Res 2005, 112:24-31.
  • [12]Tucker S, Tingley D, Scallan C: Oral adenoviral-based vaccines: historical perspective and future opportunity. Expert Rev Vaccines 2008, 7:25-31.
  • [13]Scott R, Dudding B, Romano S, Russell P: Enteric immunization with live adenovirus type 21 vaccine II. systemic and local immune responses following immunization. Infect Immun 1972, 5:300-304.
  • [14]Yang T, Millar J, Grinshtein N, Bassett J, Finn J, Bramson J: T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev Vaccines 2007, 6:347-356.
  • [15]Hsu K, Lubeck M, Bhat B, Bhat R, Kostek B, Selling B, Mizutani S, Davis A, Hung P: Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 1994, 12:607-612.
  • [16]Shanley J, Wu C: Intranasal immunization with a replication-deficient adenovirus vector expressing glycoprotein H of murine cytomegalovirus induces mucosal and systemic immunity. Vaccine 2005, 23:996-1003.
  • [17]Shi Z, Zeng M, Yang G, Siegel F, Cain L, Van Kampen K, Elmets C, Tang D: Protection against tetanus by needle-free inoculation of adenovirus-vectored nasal and epicutaneous vaccines. J Virol 2001, 75:11474-11482.
  • [18]Morin J, Lubeck M, Barton J, Conley A, Davis A, Hung P: Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. Proc Natl Acad Sci USA 1987, 84:4626-4630.
  • [19]Alkhatib G, Briedis D: High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin by using an adenovirus type 5 helper-free vector system. J Virol 1988, 62:2718-2727.
  • [20]Buge S, Richardson E, Alipanah S, Markham P, Cheng S, Kalyan N, Miller C, Lubeck M, Udem S, Eldridge J: An adenovirus-simian immunodeficiency virus env vaccine elicits humoral, cellular, and mucosal immune responses in rhesus macaques and decreases viral burden following vaginal challenge. J Virol 1997, 71:8531-8541.
  • [21]Dietzschold B, Faber M, Schnell MJ: New approaches to the prevention and eradication of rabies. Expert Rev Vaccines 2003, 2:399-406.
  • [22]Patel A, Zhang Y, Croyle M, Tran K, Gray M, Strong J, Feldmann H, Wilson JM, Kobinger GP: Mucosal delivery of adenovirus-based vaccine protects against Ebola virus infection in mice. J Infect Dis 2007, 196(Suppl 2):S413-S420.
  • [23]Xiang Z, Li Y, Gao G, Wilson JM, Ertl HC: Mucosally delivered E1-deleted adenoviral vaccine carriers induce transgene product-specific antibody responses in neonatal mice. J Immunol 2003, 171:4287-4293.
  • [24]Damjanovic D, Zhang X, Mu J, Fe Medina M, Xing Z: Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector. Genet Vaccines Ther 2008, 6:5. BioMed Central Full Text
  • [25]Davidson B, Allen E, Kozarsky K, Wilson J, Roessler B: A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993, 3:219-223.
  • [26]Burastero S, Mistrello G, Falagiani P, Paolucci C, Breda D, Roncarolo D, Zanotta S, Monasterolo G, Rossi R: Effect of sublingual immunotherapy with grass monomeric allergoid on allergen-specific T-cell proliferation and interleukin 10 production. Ann Allergy Asthma Immunol 2008, 100:343-350.
  • [27]Akdis M: Immunologic responses to sublingual allergen immunotherapy. Clin Allergy Immunol 2008, 21:71-86.
  • [28]Bohle B, Kinaciyan T, Gerstmayr M, Radakovics A, Jahn-Schmid B, Ebner C: Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol 2007, 120:707-713.
  • [29]Madonini E, Agostinis F, Barra R, Berra A, Donadio D, Pappacoda A, Stefani E, Tierno E: Long-term and preventive effects of sublingual allergen-specific immunotherapy: a retrospective, multicentric study. Int J Immunopathol Pharmacol 2003, 16:73-79.
  • [30]Cuburu N, Kweon M, Song J, Hervouet C, Luci C, Sun J, Hofman P, Holmgren J, Anju re F, Czerkinsky C: Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine 2007, 25:8598-8610.
  • [31]Song J, Nguyen H, Cuburu N, Horimoto T, Ko S, Park S, Czerkinsky C, Kweon M: Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Natl Acad Sci USA 2008, 105:1644-1649.
  • [32]Domm W, Brooks L, Chung HL, Feng C, Bowers WJ, Watson G, McGrath JL, Dewhurst S: Robust antigen-specific humoral immune responses to sublingually delivered adenoviral vectors encoding HIV-1 Env: Association with mucoadhesion and efficient penetration of the sublingual barrier. Vaccine 2011, 29:7080-7089.
  • [33]Appledorn DM, Aldhamen YA, Godbehere S, Seregin SS, Amalfitano A: Sublingual administration of an adenovirus serotype 5 (Ad5)-based vaccine confirms toll-like receptor agonist activity in the oral cavity and elicits improved mucosal and systemic cell-mediated responses against HIV antigens despite preexisting ad5 immunity. Clin Vaccine Immunol 2011, 18:150-160.
  • [34]Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat med 2004, 10:871-875.
  • [35]Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh W, Zaki S, Murphy B: Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004, 78:3572-3577.
  • [36]Bisht H, Roberts A, Vogel L, Bukreyev A, Collins P, Murphy B, Subbarao K, Moss B: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 2004, 101:6641-6646.
  • [37]Mitragotri S: Immunization without needles. Nat Rev Immunol 2005, 5:905-916.
  • [38]Neutra M, Kozlowski P: Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006, 6:148-158.
  • [39]Yang Z, Kong W, Huang Y, Roberts A, Murphy B, Subbarao K, Nabel G: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004, 428:561-564.
  • [40]Lee J, Poo H, Han D, Hong S, Kim K, Cho M, Kim E, Sung M, Kim C: Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 2006, 80:4079-4087.
  • [41]Williamson J, Stohlman S: Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol 1990, 64:4589-4592.
  • [42]Harty J, Tvinnereim A, White D: CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 2000, 18:275-308.
  • [43]Zhi Y, Kobinger G, Jordan H, Suchma K, Weiss S, Shen H, Schumer G, Gao G, Boyer J, Crystal R: Identification of murine CD8 T cell epitopes in codon-optimized SARS-associated coronavirus spike protein. Virology 2005, 335:34-45.
  • [44]Cho H, Kim J, Lee Y, Kim J, Kim Y, Chun T, Oh Y: Enhanced humoral and cellular immune responses after sublingual immunization against human papillomavirus 16 L1 protein with adjuvants. Vaccine 2010, 28:2598-2606.
  • [45]Cuburu N, Kweon MN, Hervouet C, Cha HR, Pang YYS, Holmgren J, Stadler K, Schiller JT, Anjuere F, Czerkinsky C: Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J Immunol 2009, 183:7851-7859.
  • [46]Hervouet C, Luci C, Cuburu N, Cremel M, Bekri S, Vimeux L, Maranon C, Czerkinsky C: Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract. Vaccine 2010, 28:5582-5590.
  • [47]Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S: The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat Rev Microbiol 2009, 7:226-236.
  • [48]Huang J, Huang J, Duan Z, Wei J, Min J, Luo X, Li J, Tan W, Wu L, Liu R: Th2 predominance and CD8+ memory T cell depletion in patients with severe acute respiratory syndrome. Microbes Infect 2005, 7:427-436.
  • [49]See R, Petric M, Lawrence D, Mok C, Rowe T, Zitzow L, Karunakaran K, Voss T, Brunham R, Gauldie J: Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J Gen Virol 2008, 89:2136-2146.
  • [50]Kobinger G, Figueredo J, Rowe T, Zhi Y, Gao G, Sanmiguel J, Bell P, Wivel N, Zitzow L, Flieder D: Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine 2007, 25:5220-5231.
  • [51]Barouch DH, McKay PF, Sumida SM, Santra S, Jackson SS, Gorgone DA, Lifton MA, Chakrabarti BK, Xu L, Nabel GJ: Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J Virol 2003, 77:8729-8735.
  • [52]Lewis D, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, Woodrow M, Thierry-Carstensen B, Andersen P, Novicki D: Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 2009, 4:e6999.
  • [53]Hamilton MA, Russo RC, Thurston RV: Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 1977, 11:714-719.
  • [54]Busch DH, Pilip IM, Vijh S, Pamer EG: Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 1998, 8:353-362.
  文献评价指标  
  下载次数:4次 浏览次数:3次