期刊论文详细信息
Virology Journal
The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity
Matthew Frieman1  Alissa Pham2  Alexandra Schäfer3  Krystal Matthews1 
[1] Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore 21201, MD, USA;Current Address: NYU Langone Medical Center, Department of Pathology, 538 Medical Science Building, New York 10016, NY, USA;Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill 27599, NC, USA
关键词: Innate immunity;    Interferon;    IRF3;    Severe acute respiratory syndrome;    Coronavirus;   
Others  :  1131073
DOI  :  10.1186/s12985-014-0209-9
 received in 2014-08-29, accepted in 2014-11-18,  发布年份 2014
PDF
【 摘 要 】

Background

The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction.

Methods

We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro.

Results

Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro’s DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response.

Conclusion

These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.

【 授权许可】

   
2014 Matthews et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150228230432834.pdf 2050KB PDF download
Figure 6. 40KB Image download
Figure 5. 60KB Image download
Figure 4. 51KB Image download
Figure 3. 53KB Image download
Figure 2. 51KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003, 348:1967-1976.
  • [2]Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, et al.: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300:1394-1399.
  • [3]Yang L, Wu Z, Ren X, Yang F, He G, Zhang J, Dong J, Sun L, Zhu Y, Du J, Zhang S, JinQ: Novel SARS-like Betacoronaviruses in Bats, China.Emerging Infect Dis 2011, 19.
  • [4]Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503:535-538.
  • [5]Dominguez SR, O’Shea TJ, Oko LM, Holmes KV: Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis 2007, 13:1295-1300.
  • [6]Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB: Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J Virol 2010, 84:13004-13018.
  • [7]Misra V, Dumonceaux T, Dubois J, Willis C, Nadin-Davis S, Severini A, Wandeler A, Lindsay R, Artsob H: Detection of polyoma and corona viruses in bats of Canada. J Gen Virol 2009, 90:2015-2022.
  • [8]Gloza-Rausch F, Ipsen A, Seebens A, Gottsche M, Panning M, Drexler JF, Petersen N, Annan A, Grywna K, Muller M, Pfefferle S, Drosten C: Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis 2008, 14:626-631.
  • [9]Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Corrie Schoeman M, Drosten C, Drexler JF, Preiser W: Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa [letter].Emerg Infect Dis 2013.
  • [10]Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, Hoschler K, Brown K, Galiano M, Myers R, Pebody RG, Green HK, Boddington NL, Gopal R, Price N, Newsholme W, Drosten C, Fouchier RA, Zambon M: Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill 2012, 17:20290.
  • [11]van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus ADME, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RAM: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012, 3(6):e00473-12. doi:10.1128/mBio.00473-12
  • [12]Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA: Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol 2006, 80:2684-2693.
  • [13]Cinatl J Jr, Hoever G, Morgenstern B, Preiser W, Vogel JU, Hofmann WK, Bauer G, Michaelis M, Rabenau HF, Doerr HW: Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cell Mol Life Sci 2004, 61:2100-2112.
  • [14]Pewe L, Zhou H, Netland J, Tangudu C, Olivares H, Shi L, Look D, Gallagher T, Perlman S: A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus. J Virol 2005, 79:11335-11342.
  • [15]Tangudu C, Olivares H, Netland J, Perlman S, Gallagher T: Severe acute respiratory syndrome coronavirus protein 6 accelerates murine coronavirus infections. J Virol 2007, 81:1220-1229.
  • [16]Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS: Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 2009, 83:6689-6705.
  • [17]Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS: Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 2007, 81:9812-9824.
  • [18]Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC: The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2005, 79:15189-15198.
  • [19]Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC: Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol 2010, 84:4619-4629.
  • [20]Wathelet MG, Orr M, Frieman MB, Baric RS: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 2007, 81:11620-11633.
  • [21]Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S: Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 2006, 103:12885-12890.
  • [22]Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P: Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2007, 81:548-557.
  • [23]Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CT, Baker SC, Li K: Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 2007, 282:32208-32221.
  • [24]Basu D, Walkiewicz MP, Frieman M, Baric RS, Auble DT, Engel DA: Novel influenza virus NS1 antagonists block replication and restore innate immune function. J Virol 2009, 83:1881-1891.
  • [25]Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schafer A, Matzke MM, Webb-Robertson BJ, Chang J, Luna ML, Long CE, Shukla AK, Bankhead AR 3rd, Burkett SE, Zornetzer G, Tseng CT, Metz TO, Pickles R, McWeeney S, Smith RD, Katze MG, Waters KM, Baric RS: Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol 2013, 87:3885-3902.
  • [26]Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM, Rota PA, Baker SC: Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 2004, 78:13600-13612.
  • [27]Li SW, Lai CC, Ping JF, Tsai FJ, Wan L, Lin YJ, Kung SH, Lin CW: Severe acute respiratory syndrome coronavirus papain-like protease suppressed alpha interferon-induced responses through downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways. J Gen Virol 2011, 92:1127-1140.
  • [28]Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Mesecar AD: Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A 2006, 103:5717-5722.
  • [29]Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, Clementz MA, Banach BS, Li K, Baker SC, Chen Z: Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of sting-mediated signaling. PLoS One 2012, 7:e30802.
  • [30]Wilkinson KD: Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus. NL63 2007, 81:6007-6018.
  • [31]Durbin JE, Fernandez-Sesma A, Lee CK, Rao TD, Frey AB, Moran TM, Vukmanovic S, García-Sastre A, Levy DE: Type I IFN modulates innate and specific antiviral immunity. J Immunol 2000, 164:4220-4228.
  • [32]Levy DE, García-Sastre A: The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 2001, 12:143-156.
  • [33]Chen Z, Wang Y, Ratia K, Mesecar AD, Wilkinson KD, Baker SC: Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J Virol 2007, 81:6007-6018.
  • [34]Lin R, Heylbroeck C, Pitha PM, Hiscott J: Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998, 18:2986-2996.
  • [35]Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y: Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 2005, 310:1499-1504.
  • [36]Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, Shiota K, Okabe Y, Namiki H, Fujita T: Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cell: Devoted Mol Cell Mech 2001, 6:375-388.
  • [37]Zucchini N, Williams V, Grandvaux N: Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection. J Interferon Cytokine Res 2012, 32:393-400.
  • [38]Cui J, Song Y, Li Y, Zhu Q, Tan P, Qin Y, Wang HY, Wang RF: USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res 2014, 24:400-416.
  • [39]Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, Chen ZJ: Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012, 36:959-973.
  • [40]Frieman M, Heise M, Baric R: SARS coronavirus and innate immunity. Virus Res 2008, 133:101-112.
  文献评价指标  
  下载次数:7次 浏览次数:14次