期刊论文详细信息
Molecular Neurodegeneration
Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice
Jason L Eriksen2  Yuen-Sum Lau1  Saghi Montazari2  Odochi Ohia-Nwoko2 
[1] American Association of Colleges of Pharmacy, Alexandria, VA 22314, USA;Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 521 Science and Research Building 2, 4800 Calhoun Road, Houston, TX 77204, USA
关键词: Neurodegeneration;    Alzheimer’s disease;    Exercise;    Tau pathology;   
Others  :  1138624
DOI  :  10.1186/1750-1326-9-54
 received in 2014-04-22, accepted in 2014-11-17,  发布年份 2014
PDF
【 摘 要 】

Background

Recent epidemiological evidence suggests that modifying lifestyle by increasing physical activity could be a non-pharmacological approach to improving symptoms and slowing disease progression in Alzheimer’s disease and other tauopathies. Previous studies have shown that exercise reduces tau hyperphosphorylation, however, it is not known whether exercise reduces the accumulation of soluble or insoluble tau aggregates and neurofibrillary tangles, which are both neuropathological hallmarks of neurodegenerative tauopathy. In this study, 7-month old P301S tau transgenic mice were subjected to 12-weeks of forced treadmill exercise and evaluated for effects on motor function and tau pathology at 10 months of age.

Results

Exercise improved general locomotor and exploratory activity and resulted in significant reductions in full-length and hyperphosphorylated tau in the spinal cord and hippocampus as well as a reduction in sarkosyl-insoluble AT8-tau in the spinal cord. Exercise did not attenuate significant neuron loss in the hippocampus or cortex. Key proteins involved in autophagy—microtubule-associated protein 1A/1B light chain 3 and p62/sequestosome 1 —were also measured to assess whether autophagy is implicated in the exercised-induced reduction of aggregated tau protein. There were no significant effects of forced treadmill exercise on autophagy protein levels in P301S mice.

Conclusions

Our results suggest that forced treadmill exercise differently affects the brain and spinal cord of aged P301S tau mice, with greater benefits observed in the spinal cord versus the brain. Our work adds to the growing body of evidence that exercise is beneficial in tauopathy, however these benefits may be more limited at later stages of disease.

【 授权许可】

   
2014 Ohia-Nwoko et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150320065538585.pdf 2600KB PDF download
Figure 7. 72KB Image download
Figure 6. 137KB Image download
Figure 5. 66KB Image download
Figure 4. 62KB Image download
Figure 3. 45KB Image download
Figure 2. 217KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP: The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 2013, 9:63-75. e62
  • [2]Hebert LE, Weuve J, Scherr PA, Evans DA: Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 2013, 80:1778-1783.
  • [3]Goedert M, Jakes R: Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 2005, 1739:240-250.
  • [4]Hasegawa M: Biochemistry and molecular biology of tauopathies. Neuropathology 2006, 26:484-490.
  • [5]Goedert M, Spillantini MG: Pathogenesis of the tauopathies. J Mol Neurosci 2011, 45:425-431.
  • [6]Karakaya T, Fusser F, Prvulovic D, Hampel H: Treatment options for tauopathies. Curr Treat Options Neurol 2012, 14:126-136.
  • [7]Anand R, Gill KD, Mahdi AA: Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 2014, 76 Pt A:27-50.
  • [8]Kramer AF, Colcombe SJ, McAuley E, Scalf PE, Erickson KI: Fitness, aging and neurocognitive function. Neurobiol Aging 2005, 26(Suppl 1):124-127.
  • [9]Lista I, Sorrentino G: Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 2010, 30:493-503.
  • [10]Hogan CL, Mata J, Carstensen LL: Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychol Aging 2013, 28:587-594.
  • [11]Hotting K, Roder B: Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 2013, 9 Pt B:2243-2257.
  • [12]Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S: High impact running improves learning. Neurobiol Learn Mem 2007, 87:597-609.
  • [13]Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH: Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 2010, 298:R372-R377.
  • [14]Gons RA, Tuladhar AM, de Laat KF, van Norden AG, van Dijk EJ, Norris DG, Zwiers MP, de Leeuw FE: Physical activity is related to the structural integrity of cerebral white matter. Neurology 2013, 81:971-976.
  • [15]Tseng BY, Uh J, Rossetti HC, Cullum CM, Diaz-Arrastia RF, Levine BD, Lu H, Zhang R: Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J Magn Reson Imaging 2013, 38:1169-1176.
  • [16]Rolland Y, Pillard F, Klapouszczak A, Reynish E, Thomas D, Andrieu S, Riviere D, Vellas B: Exercise program for nursing home residents with Alzheimer’s disease: a 1-year randomized, controlled trial. J Am Geriatr Soc 2007, 55:158-165.
  • [17]Pitkala KH, Poysti MM, Laakkonen ML, Tilvis RS, Savikko N, Kautiainen H, Strandberg TE: Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med 2013, 173:894-901.
  • [18]de Andrade LP, Gobbi LT, Coelho FG, Christofoletti G, Riani Costa JL, Stella F: Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer’s disease: a controlled trial. J Am Geriatr Soc 2013, 61:1919-1926.
  • [19]Adlard PA, Perreau VM, Pop V, Cotman CW: Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 2005, 25:4217-4221.
  • [20]Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW: Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation 2008, 5:13. BioMed Central Full Text
  • [21]Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY: Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med 2008, 22:529-539.
  • [22]Nichol KE, Parachikova AI, Cotman CW: Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res 2007, 184:124-132.
  • [23]Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, Timson BF, Csernansky JG: Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 2009, 35:426-432.
  • [24]Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW: Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 2009, 5:287-294.
  • [25]Dao AT, Zagaar MA, Salim S, Eriksen JL, Alkadhi KA: Regular exercise prevents non-cognitive disturbances in a rat model of Alzheimer’s disease. Int J Neuropsychopharmacol 2014, 17:593-602.
  • [26]Steffen TM, Boeve BF, Mollinger-Riemann LA, Petersen CM: Long-term locomotor training for gait and balance in a patient with mixed progressive supranuclear palsy and corticobasal degeneration. Phys Ther 2007, 87:1078-1087.
  • [27]Steffen TM, Boeve BF, Petersen CM, Dvorak L, Kantarci K: Long-term exercise training for an individual with mixed corticobasal degeneration and progressive supranuclear palsy features: 10-year case report follow-up. Phys Ther 2014, 94:289-296.
  • [28]Leem YH, Lim HJ, Shim SB, Cho JY, Kim BS, Han PL: Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res 2009, 87:2561-2570.
  • [29]Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R, Grosjean ME, Demeyer D, Obriot H, Brion I, Barbot B, Galas MC, Staels B, Humez S, Sergeant N, Schraen-Maschke S, Muhr-Tailleux A, Hamdane M, Buée L: Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiol Dis 2011, 43:486-494.
  • [30]Kang EB, Kwon IS, Koo JH, Kim EJ, Kim CH, Lee J, Yang CH, Lee YI, Cho IH, Cho JY: Treadmill exercise represses neuronal cell death and inflammation during Abeta-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 2013, 18:1332-1347.
  • [31]Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, Oliveira MS, Jesse CR: Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by beta-amyloid(1)(-)(4)(0) peptide. Neurotox Res 2013, 24:148-163.
  • [32]Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA: Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 2013, 10:507-515.
  • [33]Liu HL, Zhao G, Zhang H, Shi LD: Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2013, 256:261-272.
  • [34]Liu HL, Zhao G, Cai K, Zhao HH, Shi LD: Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 2011, 218:308-314.
  • [35]Um HS, Kang EB, Koo JH, Kim HT, Jin L, Kim EJ, Yang CH, An GY, Cho IH, Cho JY: Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res 2011, 69:161-173.
  • [36]Cracchiolo JR, Mori T, Nazian SJ, Tan J, Potter H, Arendash GW: Enhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem 2007, 88:277-294.
  • [37]Shim SB, Lim HJ, Chae KR, Kim CK, Hwang DY, Jee SW, Lee SH, Sin JS, Leem YH, Lee SH, Cho JS, Lee HH, Choi SY, Kim YK: Tau overexpression in transgenic mice induces glycogen synthase kinase 3beta and beta-catenin phosphorylation. Neuroscience 2007, 146:730-740.
  • [38]He C, Sumpter R Jr, Levine B: Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 2012, 8:1548-1551.
  • [39]Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012, 135:2169-2177.
  • [40]Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M, Tolnay M, Winkler DT: Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 2013, 8:e62459.
  • [41]Naylor M, Bowen KK, Sailor KA, Dempsey RJ, Vemuganti R: Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int 2005, 47:565-572.
  • [42]Molteni R, Ying Z, Gomez-Pinilla F: Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 2002, 16:1107-1116.
  • [43]Huang AM, Jen CJ, Chen HF, Yu L, Kuo YM, Chen HI: Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm 2006, 113:803-811.
  • [44]Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR: Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 2002, 88:2187-2195.
  • [45]Marlatt MW, Potter MC, Lucassen PJ, van Praag H: Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6 J mice. Dev Neurobiol 2012, 72:943-952.
  • [46]Parachikova A, Nichol KE, Cotman CW: Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis 2008, 30:121-129.
  • [47]Ke HC, Huang HJ, Liang KC, Hsieh-Li HM: Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 2011, 1403:1-11.
  • [48]Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristofol R, Delgado-Garcia JM, Sanfeliu C: Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 2011, 24:421-454.
  • [49]Xu ZQ, Zhang LQ, Wang Q, Marshall C, Xiao N, Gao JY, Wu T, Ding J, Hu G, Xiao M: Aerobic exercise combined with antioxidative treatment does not counteract moderate- or mid-stage Alzheimer-like pathophysiology of APP/PS1 mice. CNS Neurosci Ther 2013, 19:795-803.
  • [50]Garcia-Mesa Y, Gimenez-Llort L, Lopez LC, Venegas C, Cristofol R, Escames G, Acuna-Castroviejo D, Sanfeliu C: Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 2012, 33:1124. e1113-1129
  • [51]Leem YH, Lee YI, Son HJ, Lee SH: Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 2011, 406:359-365.
  • [52]Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007, 53:337-351.
  • [53]Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO: Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 2011, 33:1264-1274.
  • [54]Patki G, Lau YS: Impact of exercise on mitochondrial transcription factor expression and damage in the striatum of a chronic mouse model of Parkinson’s disease. Neurosci Lett 2011, 505:268-272.
  • [55]Planel E, Bretteville A, Liu L, Virag L, Du AL, Yu WH, Dickson DW, Whittington RA, Duff KE: Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB J 2009, 23:2595-2604.
  • [56]Mizushima N, Yoshimori T: How to interpret LC3 immunoblotting. Autophagy 2007, 3:542-545.
  • [57]Norman JM, Cohen GM, Bampton ET: The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 2010, 6:1042-1056.
  • [58]El-Khoury V, Pierson S, Szwarcbart E, Brons NH, Roland O, Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G: Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014, 28:1636-1646.
  • [59]Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, Morbin M, Primavera A, Carella F, Solaro C, Grisoli M, Savoiardo M, Spillantini MG, Tagliavini F, Goedert M, Ghetti B: Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 1999, 58:667-677.
  • [60]Lossos A, Reches A, Gal A, Newman JP, Soffer D, Gomori JM, Boher M, Ekstein D, Biran I, Meiner Z, Abramsky O, Rosenmann H: Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J Neurol 2003, 250:733-740.
  • [61]Goedert M, Jakes R, Crowther RA: Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett 1999, 450:306-311.
  • [62]Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG: Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 2010, 208:250-257.
  • [63]Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 2013, 33:1024-1037.
  • [64]Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VM, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M: Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013, 79:1094-1108.
  • [65]Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX, Ballatore C, Smith AB 3rd, Lee VM, Brunden KR: The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 2012, 32:3601-3611.
  • [66]Hoffmann NA, Dorostkar MM, Blumenstock S, Goedert M, Herms J: Impaired plasticity of cortical dendritic spines in P301S tau transgenic mice. Acta Neuropathol Commun 2013, 1:82. BioMed Central Full Text
  • [67]Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, Czarkowska-Bauch J: Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci 2009, 10:144. BioMed Central Full Text
  • [68]Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, Vuckovic MG, Jakowec MW: Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis 2014, 63:201-209.
  • [69]Quirie A, Hervieu M, Garnier P, Demougeot C, Mossiat C, Bertrand N, Martin A, Marie C, Prigent-Tessier A: Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 2012, 7:e44218.
  • [70]Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS: Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res 2012, 1456:36-48.
  • [71]Ding Y, Li J, Lai Q, Azam S, Rafols JA, Diaz FG: Functional improvement after motor training is correlated with synaptic plasticity in rat thalamus. Neurol Res 2002, 24:829-836.
  • [72]Di Loreto S, Falone S, D’Alessandro A, Santini S Jr, Sebastiani P, Cacchio M, Amicarelli F: Regular and moderate exercise initiated in middle age prevents age-related amyloidogenesis and preserves synaptic and neuroprotective signaling in mouse brain cortex. Exp Gerontol 2014, 57C:57-65.
  • [73]Ferreira AF, Real CC, Rodrigues AC, Alves AS, Britto LR: Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res 2011, 1425:111-122.
  • [74]Fang ZH, Lee CH, Seo MK, Cho H, Lee JG, Lee BJ, Park SW, Kim YH: Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci Res 2013, 76:187-194.
  • [75]Shih PC, Yang YR, Wang RY: Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One 2013, 8:e78163.
  • [76]Augustinack JC, Schneider A, Mandelkow EM, Hyman BT: Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002, 103:26-35.
  • [77]Koga S, Kojima A, Ishikawa C, Kuwabara S, Arai K, Yoshiyama Y: Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression. Neurobiol Dis 2014, 71:180-192.
  • [78]Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ: Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Curr Top Behav Neurosci 2013, 15:313-340.
  • [79]Leasure JL, Jones M: Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 2008, 156:456-465.
  • [80]Julien C, Bretteville A, Planel E: Biochemical isolation of insoluble tau in transgenic mouse models of tauopathies. Methods Mol Biol 2012, 849:473-491.
  • [81]Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R: Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2012, 2:700.
  • [82]Gerson JE, Kayed R: Formation and propagation of tau oligomeric seeds. Front Neurol 2013, 4:93.
  • [83]Crescenzi R, DeBrosse C, Nanga RP, Reddy S, Haris M, Hariharan H, Iba M, Lee VM, Detre JA, Borthakur A, Reddy R: In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage 2014, 101:185-192.
  • [84]van Groen T, Miettinen P, Kadish I: The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 2003, 13:133-149.
  • [85]Witter MP, Wouterlood FG, Naber PA, Van Haeften T: Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci 2000, 911:1-24.
  • [86]de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT: Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 2012, 73:685-697.
  • [87]Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K: Trans-synaptic spread of tau pathology in vivo. PLoS One 2012, 7:e31302.
  • [88]Maurin H, Chong SA, Kraev I, Davies H, Kremer A, Seymour CM, Lechat B, Jaworski T, Borghgraef P, Devijver H, Callewaert G, Stewart MG, Van Leuven F: Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 2014, 9:e87605.
  • [89]Poduri A, Beason-Held LL, Moss MB, Rosene DL, Hyman BT: CA3 neuronal degeneration follows chronic entorhinal cortex lesions. Neurosci Lett 1995, 197:1-4.
  • [90]Ke Z, Yip SP, Li L, Zheng XX, Tong KY: The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One 2011, 6:e16643.
  • [91]Sennott J, Morrissey J, Standley PR, Broderick TL: Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes. Pathophysiol J Int Soc Pathophysiol 2008, 15:173-179.
  • [92]Cook MD, Martin SA, Williams C, Whitlock K, Wallig MA, Pence BD, Woods JA: Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain Behav Immun 2013, 33:46-56.
  • [93]Mokhtarian A, Lefaucheur JP, Even PC, Sebille A: Effects of treadmill exercise and high-fat feeding on muscle degeneration in mdx mice at the time of weaning. Clin Sci 1995, 89:447-452.
  • [94]McKinnon C, Tabrizi SJ: The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal 2014.
  • [95]Tan CC, Yu JT, Tan MS, Jiang T, Zhu XC, Tan L: Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 2013, 35:941-957.
  • [96]Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T: Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009, 452:181-197.
  • [97]Schaeffer V, Goedert M: Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy 2012, 8:1686-1687.
  • [98]Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V: Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 2010, 5:e9979.
  • [99]Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC: Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 2007, 3:331-338.
  • [100]Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC: Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007, 282:5641-5652.
  • [101]Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC: Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003, 278:25009-25013.
  • [102]Babu JR, Geetha T, Wooten MW: Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 2005, 94:192-203.
  • [103]Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N, Zhu H, Wooten MC, Diaz-Meco MT, Moscat J, Wooten MW: Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 2008, 106:107-120.
  • [104]Lee MJ, Lee JH, Rubinsztein DC: Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013, 105:49-59.
  • [105]Ambegaokar SS, Jackson GR: The downward spiral of tau and autolysosomes: a new hypothesis in neurodegeneration. Autophagy 2012, 8:1144-1145.
  • [106]Elrick MJ, Lieberman AP: Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis. Autophagy 2013, 9:234-235.
  • [107]Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141:1146-1158.
  • [108]Nixon RA, Yang DS: Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis 2011, 43:38-45.
  • [109]Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T: The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008, 118:2190-2199.
  • [110]Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H: Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009, 94:1062-1069.
  • [111]Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW: Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 2005, 133:853-861.
  • [112]Chen MJ, Russo-Neustadt AA: Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus 2009, 19:962-972.
  • [113]Neeper SA, Gomez-Pinilla F, Choi J, Cotman C: Exercise and brain neurotrophins. Nature 1995, 373:109.
  • [114]Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW: Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996, 726:49-56.
  • [115]Reichardt LF: Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006, 361:1545-1564.
  • [116]Elliott E, Atlas R, Lange A, Ginzburg I: Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 Kinase signalling mechanism. Eur J Neurosci 2005, 22:1081-1089.
  • [117]Dobarro M, Orejana L, Aguirre N, Ramirez MJ: Propranolol restores cognitive deficits and improves amyloid and Tau pathologies in a senescence-accelerated mouse model. Neuropharmacology 2013, 64:137-144.
  • [118]Bayod S, Del Valle J, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, Escorihuela RM, Pallas M: Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol 2011, 111:1380-1390.
  • [119]Al-Jarrah M, Pothakos K, Novikova L, Smirnova IV, Kurz MJ, Stehno-Bittel L, Lau YS: Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of parkinsonism with severe neurodegeneration. Neuroscience 2007, 149:28-37.
  • [120]Vollert C, Zagaar M, Hovatta I, Taneja M, Vu A, Dao A, Levine A, Alkadhi K, Salim S: Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res 2011, 224:233-240.
  • [121]Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R: Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 2012, 26:1946-1959.
  • [122]Franklin KBJ, Paxinos G: Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Compact 3rd ed. Edited by Franklin KBJ, Paxinos G. Amsterdam; London: Elsevier Academic Press; 2008.
  • [123]Watson C: The spinal cord : a Christopher and Dana Reeve Foundation text and atlas. London: Academic; 2009.
  • [124]Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A: APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 2013, 22:3460-3476.
  • [125]Bailey KR, Crawley JN: Anxiety-Related Behaviors in Mice. In Methods of Behavior Analysis in Neuroscience. 2nd edition. Edited by Buccafusco JJ. Boca Raton (FL): Frontiers in Neuroscience; 2009.
  文献评价指标  
  下载次数:83次 浏览次数:155次