期刊论文详细信息
Respiratory Research
Immunohistochemical detection and regulation of α5 nicotinic acetylcholine receptor (nAChR) subunits by FoxA2 during mouse lung organogenesis
Paul R Reynolds1  Charles P Willnauer1  Alex J Geyer1  Benjamin R Bukey1  Jason L Porter1 
[1] Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
关键词: nAChR;    lung;    epithelium;    development;    alpha 5;   
Others  :  796840
DOI  :  10.1186/1465-9921-12-82
 received in 2011-05-13, accepted in 2011-06-17,  发布年份 2011
PDF
【 摘 要 】

Background

α5 nicotinic acetylcholine receptor (nAChR) subunits structurally stabilize functional nAChRs in many non-neuronal tissue types. The expression of α5 nAChR subunits and cell-specific markers were assessed during lung morphogenesis by co-localizing immunohistochemistry from embryonic day (E) 13.5 to post natal day (PN) 20. Transcriptional control of α5 nAChR expression by FoxA2 and GATA-6 was determined by reporter gene assays.

Results

Steady expression of α5 nAChR subunits was observed in distal lung epithelial cells during development while proximal lung expression significantly alternates between abundant prenatal expression, absence at PN4 and PN10, and a return to intense expression at PN20. α5 expression was most abundant on luminal edges of alveolar type (AT) I and ATII cells, non-ciliated Clara cells, and ciliated cells in the proximal lung at various periods of lung formation. Expression of α5 nAChR subunits correlated with cell differentiation and reporter gene assays suggest expression of α5 is regulated in part by FoxA2, with possible cooperation by GATA-6.

Conclusions

Our data reveal a highly regulated temporal-spatial pattern of α5 nAChR subunit expression during important periods of lung morphogenesis. Due to specific regulation by FoxA2 and distinct identification of α5 in alveolar epithelium and Clara cells, future studies may identify possible mechanisms of cell differentiation and lung homeostasis mediated at least in part by α5-containing nAChRs.

【 授权许可】

   
2011 Porter et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706012617289.pdf 6890KB PDF download
Figure 2. 107KB Image download
Figure 5. 102KB Image download
Figure 4. 114KB Image download
Figure 3. 80KB Image download
Figure 2. 176KB Image download
Figure 1. 222KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 2.

【 参考文献 】
  • [1]Hogan BL, Kolodziej PA: Organogenesis: Molecular Mechanisms of Tubulogenesis. Nat Rev Genet 2002, 3.7:513-23.
  • [2]Zhou L, Dey CR, Wert SE, Yan C, Costa RH, Whitsett JA: Hepatocyte Nuclear Factor-3 beta Limits Cellular Diversity in the Developing Respiratory Epithelium and Alters Lung Morphogenesis in Vivo. Dev Dyn 1997, 210.3:305-14.
  • [3]Liu C, Morrisey EE, Whitsett JA: GATA-6 is required for maturation of the lung in late gestation. Am J Physiol-Lung C 2002, 283:L468-L475.
  • [4]Costa RH, Kalinichenko V, Lim L: Transcription Factors in Mouse Lung Development and Function. Am J Physiol-Lung C 2001, 280.5:L823-38.
  • [5]Bohinski RJ, Di Lauro R, Whitsett JA: The Lung-Specific Surfactant Protein B Gene Promoter is a Target for Thyroid Transcription Factor 1 and Hepatocyte Nuclear Factor 3, Indicating Common Factors for Organ-Specific Gene Expression Along the Foregut Axis. Mol Cell Biol 1994, 14.9:5671-81.
  • [6]Ikeda K, Shaw-White JR, Wert SE, Whitsett JA: Hepatocyte Nuclear Factor 3 Activates Transcription of Thyroid Transcription Factor 1 in Respiratory Epithelial Cells. Mol Cell Biol 1996, 16.7:3626-36.
  • [7]Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, Wert S, Stahlman MT, Whitsett JA: Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem 2005, 280:13809-13816.
  • [8]Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA: Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 2004, 131:953-964.
  • [9]Wan H, Xu Y, Ikegami M, Stahlman MT, Kaestner KH, Ang SL, Whitsett JA: Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci USA 2004, 101:14449-14454.
  • [10]Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS: GATA-6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998, 12:3579-3590.
  • [11]Yang H, Lu MM, Zhang L, Whitsett JA, Morrisey EE: GATA-6 regulates differentiation of distal lung epithelium. Development 2002, 129:2233-2246.
  • [12]Koutsourakis M, Keijzer R, Visser P, Post M, Tibboel D, Grosveld F: Branching and differentiation defects in pulmonary epithelium with elevated Gata6 expression. Mech Dev 2001, 105:105-114.
  • [13]Lindstrom J: Nicotinic Acetylcholine Receptors in Health and Disease. Mol Neurobiol 1997, 15.2:193-222.
  • [14]Maouche K, Polette M, Jolly T, Medjber K, Cloëz-Tayarani I, Changeux JP, Burlet H, Terryn C, Coraux C, Zahm JM, Birembaut P, Tournier JM: {Alpha}7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation. Am J Pathol 2009, 175.5:1868-82.
  • [15]Wessler I, Kirkpatrick CJ: Acetylcholine Beyond Neurons: The Non-Neuronal Cholinergic System in Humans. Brit J Pharmacol 2008, 154.8:1558-71.
  • [16]Bertrand D, Changeux J: Orthodontic correction of maxillary flaring using provisional restorations. Neuroscience 1995, 7:75-90.
  • [17]Paleari L, Grozio A, Cesario A, Russo P: The Cholinergic System and Cancer. Semin Cancer Biol 2008, 18.3:211-7.
  • [18]Rogers SW, Mandelzys A, Deneris ES, Cooper E, Heinemann S: The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J Neurosci 1992, 12(12):4611-4623.
  • [19]Reynolds PR, Mucenski ML, Whitsett JA: Thyroid Transcription Factor (TTF) -1 Regulates the Expression of Midkine (MK) during Lung Morphogenesis. Dev Dyn 2003, 227.2:227-37.
  • [20]Reynolds PR, Hoidal JR: Temporal-Spatial Expression and Transcriptional Regulation of alpha7 Nicotinic Acetylcholine Receptor by Thyroid Transcription Factor-1 and Early Growth Response Factor-1 during Murine Lung Development. J Biol Chem 2005, 280.37:32548-54.
  • [21]Reynolds PR, Allisson CH, Willnauer CP: TTF-1 regulates alpha5 nicotinic acetylcholine receptor (nAChR) subunits in proximal and distal lung epithelium. Respir Res 2010, 11:175. BioMed Central Full Text
  • [22]Sporty JL, Horalkova L, Ehrhardt C: In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 2008, 4(4):333-45.
  • [23]Warburton D, Schwarz , Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV: The molecular basis of lung morphogenesis. Mech Develop 2000, 92:55-81.
  • [24]Maus AD, Pereira EF, Karachunski PI, Horton RM, Navaneetham D, Macklin K, Cortes WS, Albuquerque EX, Conti-Fine BM: Human and Rodent Bronchial Epithelial Cells Express Functional Nicotinic Acetylcholine Receptors. Mol Pharm 1998, 54.5:779-88.
  • [25]Zia S, Ndoye A, Nguyen VT, Grando SA: Nicotine Enhances Expression of the Alpha 3, Alpha 4, Alpha 5, and Alpha 7 Nicotinic Receptors Modulating Calcium Metabolism and Regulating Adhesion and Motility of Respiratory Epithelial Cells. Res Commun Mol Path 1997, 97.3:243-62.
  • [26]Wang Y, Pereira EF, Maus AD, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM: Human Bronchial Epithelial and Endothelial Cells Express alpha7 Nicotinic Acetylcholine Receptors. Mol Pharacol 2001, 60.6:1201-9.
  • [27]Lazzaro D, Price M, de Felice M, Di Lauro R: The Transcription Factor TTF-1 is Expressed at the Onset of Thyroid and Lung Morphogenesis and in Restricted Regions of the Foetal Brain. Development 1991, 113.4:1093-104.
  • [28]Zhou L, Lim L, Costa RH, Whitsett JA: Thyroid Transcription Factor-1, Hepatocyte Nuclear Factor-3 beta, Surfactant Protein B, C, and Clara Cell Secretory Protein in Developing Mouse Lung. J Histochem Cytochem 1996, 44.10:1183-93.
  • [29]Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ: The T/ebp Null Mouse: Thyroid-Specific Enhancer-Binding Protein is Essential for the Organogenesis of the Thyroid, Lung, Ventral Forebrain, and Pituitary. Genes Dev 1996, 10.1:60-9.
  • [30]Besnard V, Wert SE, Hull WM, Whitsett JA: Immunohistochemical Localization of Foxa1 and Foxa2 in Mouse Embryos and Adult Tissues. Gene Exp Patterns 2004, 193-208.
  • [31]Maeda Y, Vrushank D, Whitsett JA: Transcriptional Control of Lung Morphogenesis. Physiol Rev 2007, 87.1:219-44.
  • [32]Gomperts BN, Xiulan G, Hackett BP: Foxj1 Regulates Basal Body Anchoring to the Cytoskeleton of Ciliated Pulmonary Epithelial Cells. J Cell Sci 2004, 117:1329-37.
  • [33]Huang T, You Y, Spoor MS, Richer EJ, Kudva VV, Paige RC, Seiler MP, Liebler JM, Zabner J, Plopper CG, Brody SL: Foxj1 is Required for Apical Localization of Ezrin in Airway Epithelial Cells. J Cell Sci 2003, 116:4935-45.
  • [34]Reynolds SD, Malkinson AM: Clara Cell: Progenitor for the Bronchiolar Epithelium. Int J Biochem Cell B 2010, 42.1:1-4.
  • [35]Hsia SH, Schulman SR, Meliones JN, Canada AT, Chen SC: Effects of Maternal Nicotine Exposure on Branching Morphogenesis of Mouse Fetal Lung: In Vivo and in Vitro Studies. Acta Paediatr Tai 2003, 44.3:150-4.
  • [36]Taylor B, Wadsworth J: Maternal Smoking during Pregnancy and Lower Respiratory Tract Illness in Early Life. Arch Dis Child 1987, 62.8:786-91.
  • [37]Tager IB, Hanrahan JP, Tosteson TD, Castile RG, Brown RW, Weiss ST, Speizer FE: Lung Function, Pre- and Post-Natal Smoke Exposure, and Wheezing in the First Year of Life. Am Rev Respir Dis 1993, 147.4:811-7.
  • [38]Sandberg K, Poole SD, Hamdan A, Arbogast P, Sundell HW: Altered Lung Development After Prenatal Nicotine Exposure in Young Lambs. Pediatr Res 2004, 56.3:432-9.
  • [39]Carlisle DL, Hopkins TM, Gaither-Davis A, Silhanek MJ, Luketich JD, Christie NA, Siegfried JM: Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts. Respir Res 2004, 5:27. BioMed Central Full Text
  文献评价指标  
  下载次数:46次 浏览次数:12次