期刊论文详细信息
Proteome Science
Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains
Sergio Papa1  Anna Maria Sardanelli1  Antonio Gnoni1  Anna Abbrescia1  Maria Fiorella Mazzeo3  Rosa Anna Siciliano3  Rosa Lippolis2 
[1] Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Policlinico, Piazza G. Cesare, 70124, Bari, Italy;Institute of Biomembranes and Bioenergetics, Italian National Research Council (CNR), Via Amendola 165/A, Bari, Italy;Institute of Food Sciences, Italian National Research Council (CNR), Via Roma, 64, 83100, Avellino, Italy
关键词: Mass Spectrometry;    Two-dimensional Gel Electrophoresis;    Proteomics;    Secretome;    Probiotics;    Bacillus clausii;   
Others  :  816866
DOI  :  10.1186/1477-5956-11-28
 received in 2012-11-14, accepted in 2013-06-07,  发布年份 2013
PDF
【 摘 要 】

Background

The spore-bearing alkaliphilic Bacillus species constitute a large, heterogeneous group of microorganisms, important for their ability to produce enzymes, antibodies and metabolites of potential medical use. Some Bacillus species are currently being used for manufacturing probiotic products consisting of bacterial spores, exhibiting specific features (colonization, immune-stimulation and antimicrobial activity) that can account for their claimed probiotic properties. In the present work a comparative proteomic study was performed aimed at characterizing the secretome of four closely related isogenic O/C, SIN, N/R and T B. clausii strains, already marketed in a pharmaceutical mixture as probiotics.

Results

Proteomic analyses revealed a high degree of concordance among the four secretomes, although some proteins exhibited considerable variations in their expression level in the four strains. Among these, some proteins with documented activity in the interaction with host cells were identified, such as the glycolytic enzyme enolase, with a putative plasminogen-binding activity, GroEL, a molecular chaperone shown to be able to bind to mucin, and flagellin protein, a structural flagella protein and a putative immunomodulation agent.

Conclusion

This study shows, for the first time, differences in the secretome of the OC, SIN, NR and T B. clausii strains. These differences indicate that specific secretome features characterize each of the four strains despite their genotypic similarity. This could confer to the B. clausii strains specific probiotic functions associated with the differentially expressed proteins and indicate that they can cooperate as probiotics as the secretome components of each strain could contribute to the overall activity of a mixed probiotic preparation.

【 授权许可】

   
2013 Lippolis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710211245780.pdf 2565KB PDF download
Figure 6. 30KB Image download
Figure 5. 49KB Image download
Figure 4. 52KB Image download
Figure 3. 42KB Image download
Figure 2. 44KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ciffo F: Determination of the spectrum of antibiotic resistance of “Bacillus subtilis” strains of enterogermina. Chemioterapia 1984, 3:45-52.
  • [2]Gionchetti P, Amadini C, Rizzello F: Probiotics role in inflammatory bowel disease. Dig Liver Dis 2002, 34:58-62.
  • [3]Isolauri E: Probiotics in human disease. Am J Clin Nutr 2000, 73:1142-1146.
  • [4]Senesi S, Celandroni F, Tavanti A, Ghelardi E: Molecular characterization and identification of Bacillus clausii strains marked for use in oral bacterioterapy. Appl Environ Microbiol 2001, 67:834-839.
  • [5]Mazza P: The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm 1994, 133:3-18.
  • [6]Bozdogan B, Galopin S, Gerbaud G, Courvalin P, Leclercq R: Chromosomal aadD2 encodes an aminoglycoside nucleotidyltransferase in Bacillus clausii. Antimicrob Agents Chemother 2003, 47:1343-1346.
  • [7]Benoni G, Marcer V, Cuzzolin L, Raimo F: Antibiotic administration and oral bacterial therapy in infants. Chemioterapia 1984, 3:29-34.
  • [8]Ciffo F, Da Carro C, Giovannetti M: Gastric resistance of Bacillus subtilis spores used in oral bacteriotherapy: in vitro studies. Farmaci e terapia 1987, 3:163-169.
  • [9]Urdaci MC, Bressollier P, Pinchuk I: Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol 2004, 38:86-90.
  • [10]Lippolis R, Gnoni A, Abbrescia A, Panelli D, Maiorano S, Paternoster MS, Sardanelli AM, Papa S, Gaballo A: Comparative proteomic analysis of four Bacillus clausii strains: Proteomic expression signature distinguishes protein profile of the strain. J Proteomics 2011, 74:2846-2855.
  • [11]Ferrari E, Jarnagin AS, Schmidt BF: Commercial production of extracellular enzymes in Bacillus subtilis and other Gram-positive bacteria. In Biochemistry, Physiology and Molecular Genetics. Edited by Sonenheim AL, Hoch JA, Losick R. Washington DC: American Society for Microbiology Press; 1993:917-937.
  • [12]Schallmey M, Singh A, Ward OP: Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004, 50:1-17.
  • [13]Pooley HM, Merchante R, Karamata D: Overall protein content and induced enzyme components of the periplasm of Bacillus subtilis. Microb Drug Resist 1996, 2:9-15.
  • [14]Sutcliffe IC, Russell RR: Lipoproteins of Gram-positive bacteria. J Bacteriol 1995, 177:1123-1128.
  • [15]Lazazzera BA, Solomon JM, Grossmam AD: An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 1997, 8:917-925.
  • [16]Perego M, Hoch JA: Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphor lay controlling development in Bacillus subtilis. Proc Natl Acad Sci USA 1996, 93:1549-1553.
  • [17]Mazza P, Zani F, Martelli P: Studies on the antibiotic resistance of Bacillus subtilis strains used in oral bacteriotherapy. Boll Chim Farm 1992, 131:401-408.
  • [18]Bergmeyer HU, Gawehn K, Grassl M: Glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis. Edited by Bergmeyer HU. New York: New York Academic Press; 1974:458-459.
  • [19]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [20]Wang W, Hollmann R, Deckwer WD: Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase. Proteome Sci 2006, 5:4-19.
  • [21]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [22]Gorg A, Postel W, Gunther S: The current state of two dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1988, 9:531-546.
  • [23]Hochstrasser DF, Harrington MG, Hochstrasser AC, Miller MJ, Merril CR: Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem 1988, 173:424-435.
  • [24]Appel RD, Hochstrasser DF: Computer analysis of 2-D images. Methods Mol Biol 1999, 112:363-381.
  • [25]Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68:850-858.
  • [26]Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K: Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 2000, 146:65-75.
  • [27]Antelmann H, Scharf C, Hecker M: Phosphate starvation-inducible proteins ofBacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 2000, 182:4478-4490.
  • [28]Jongbloed JD, Martin U, Antelmann H, Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM, Müller J: TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 2000, 275:350-357.
  • [29]Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM: Proteomics of protein secretion byBacillus subtilis: Separating the “secrets” of the secretome. Microbiol Mol Biol Rev 2004, 68:207-233.
  • [30]Pancholi V, Fischietti VA: Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998, 273:14503-14515.
  • [31]Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S: Alpha-enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001, 40:1273-1287.
  • [32]Jeffery CJ: Moonlighting proteins: old proteins learning new tricks. Trends Genet 2003, 19:415-417.
  • [33]Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V: Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 2004, 72:94-105.
  • [34]Gewirtz AT, Simon PO, Schmitt CK, Taylor LJ, Hagedorn CH, O’Brien AD, Neish AS, Madara JL: Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest 2001, 107:99-109.
  • [35]Lebeer S, Vanderleyden J, De Keersmaecker SC: Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 2010, 8:171-184.
  • [36]Beck HC, Madsen SM, Glenting J, Petersen J, Israelsen H, Nørrelykke MR, Antonsson M, Hansen AM: Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum. FEMS Microbiol Lett 2009, 297:61-66.
  • [37]Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S: 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 2009, 30:949-956.
  • [38]Gilad O, Svensson B, Viborg AH, Stuer-Lauridsen B, Jacobsen S: The extracellular proteome of Bifidobacteriumanimalissubsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 2011, 11:2503-2514.
  • [39]Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE: GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 2006, 74:425-434.
  • [40]Eaves-Pyles T, Szabo C, Salzman AL: Bacterial invasion is not required for activation of NF-B in enterocytes. Infect Immun 1999, 67:800-804.
  • [41]Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, Kamm MA, Weismueller J, Beglinger C, Stolte M, Wolff C, Schulze J: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004, 53:1617-1623.
  • [42]Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K: Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1987 is mediated trough Flagellin. Infect Immun 2007, 75:2399-2407.
  • [43]Antelman HH, Tjalsma B, Voigt S, Ohlmeier S, Bron S, Van Dijl JM, Hecker M: A proteomic view on genome-based signal peptide predictions. Genome Res 2001, 11:1484-1502.
  • [44]Higgins CF: ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 2001, 152:205-210.
  • [45]Shida T, Hattori H, Ise F, Sekiguchi J: Overexpression, purification, and characterization of Bacillus subtilis N-acetylmuramoyl-L-alanine amidase CwlC. BiosciBiotechnol Biochem 2000, 64:1522-1525.
  • [46]Le Blanca JG, del Carmena S, Miyoshib A, Azevedob V, Sesmaa F, Langellac P, Bermúdez-Humaránc LG, Watterlotc L, Perdigona G, de Le Blanca A d M: Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 2011, 151:287-293.
  • [47]Jin DY, Jeang KT, et al.: Peroxiredoxins in cell signaling and HIV infection. In Antioxidant and Redox Regulation of Genes. Edited by Sen CK. Academic Press; 2000:38-407.
  • [48]Danson MJŽ: Dihydrolipoamide dehydrogenase: a ‘new’ function for an old enzyme? Biochem Soc Trans 1988, 16:87-89.
  文献评价指标  
  下载次数:54次 浏览次数:57次