期刊论文详细信息
Nutrition & Metabolism
ApoC-III and visceral adipose tissue contribute to paradoxically normal triglyceride levels in insulin-resistant African-American women
Frank M Sacks3  Marshall K Tulloch-Reid4  Novie Younger-Coleman4  Madia Ricks2  Amber B Courville1  Jeremy D Furtado3  Anne E Sumner2 
[1] Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA;Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA;Harvard School of Public Health, Boston, MA, USA;Tropical Medicine Research Institute, University of the West Indies, Kingston, Jamaica
关键词: Health disparities;    African-Americans;    Insulin resistance;    Visceral adiposity;    Apoliprotein C-III;    Triglyceride;    Visceral adipose tissue;    ApoC-III;   
Others  :  802993
DOI  :  10.1186/1743-7075-10-73
 received in 2013-10-19, accepted in 2013-12-04,  发布年份 2013
PDF
【 摘 要 】

Background

African-Americans are more insulin-resistant than whites but have lower triglyceride (TG) concentrations. The metabolic basis for this is unknown. Our goal was to determine in a cross-sectional study the effect of insulin resistance, visceral adipose tissue (VAT) and the apolipoproteins, B, C-III and E, on race differences in TG content of very low density lipoproteins (VLDL).

Methods

The participants were 31 women (16 African-American, 15 white) of similar age (37 ± 9 vs. 38 ± 11y (mean ± SD), P = 0.72) and BMI (32.4 ± 7.2 vs. 29.3 ± 6.0 kg/m2, P = 0.21). A standard diet (33% fat, 52% carbohydrate, 15% protein) was given for 7 days followed by a test meal (40% fat, 40% carbohydrate, 20% protein) on Day 8. Insulin sensitivity index (SI) was calculated from the minimal model. VAT was measured at L2-3. The influence of race, SI, VAT and apolipoproteins on the TG content of VLDL was determined by random effects models (REM).

Results

African-Americans were more insulin-resistant (SI: 3.6 ± 1.3 vs. 5.6 ± 2.6 mU/L-1.min-1, P < 0.01) with less VAT (75 ± 59 vs. 102 ± 71 cm2, P < 0.01). TG, apoB and apoC-III content of light and dense VLDL were lower in African-Americans (all P < 0.05 except for apoC-III in light VLDL, P = 0.11). ApoE content did not vary by race. In REM, VAT but not SI influenced the TG concentration of VLDL. In models with race, SI, VAT and all apolipoproteins entered, race was not significant but apoC-III and VAT remained significant determinants of TG concentration in light and dense VLDL.

Conclusions

Low concentrations of apoC-III and VAT in African-Americans contribute to race differences in TG concentrations.

Trial registration

ClinicalTrials.gov Identifier: NCT00484861

【 授权许可】

   
2013 Sumner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708033147206.pdf 304KB PDF download
Figure 2. 56KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Alberti KG, Eckel RH, Grundy SM, et al.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120:1640-1645.
  • [2]Lemieux I, Pascot A, Couillard C, et al.: Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000, 102:179-184.
  • [3]Sumner AE, Cowie CC: Ethnic differences in the ability of triglyceride levels to identify insulin resistance. Atherosclerosis 2008, 196:696-703.
  • [4]Osei K: Metabolic syndrome in blacks: are the criteria right? Curr Diab Rep 2010, 10:199-208.
  • [5]Ukegbu UJ, Castillo DC, Knight MG, et al.: Metabolic syndrome does not detect metabolic risk in African men living in the U.S. Diabetes Care 2011, 34:2297-2299.
  • [6]Yu SS, Ramsey NL, Castillo DC, Ricks M, Sumner AE: Triglyceride-based screening tests fail to recognize cardiometabolic disease in African immigrant and african-american men. Metab Syndr Relat Disord 2013, 11:15-20.
  • [7]Sumner AE, Harman JL, Buxbaum SG, et al.: The triglyceride/high-density lipoprotein cholesterol ratio fails to predict insulin resistance in African-American women: an analysis of Jackson Heart Study. Metab Syndr Relat Disord 2010, 8:511-514.
  • [8]Luc G, Fievet C, Arveiler D, et al.: Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur ‘Infarctus du Myocarde. J Lipid Res 1996, 37:508-517.
  • [9]Sacks FM, Alaupovic P, Moye LA, et al.: VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000, 102:1886-1892.
  • [10]Adiels M, Olofsson SO, Taskinen MR, Boren J: Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008, 28:1225-1236.
  • [11]Despres JP, Lemieux I: Abdominal obesity and metabolic syndrome. Nature 2006, 444:881-887.
  • [12]Chow CC, Periwal V, Csako G, et al.: Higher acute insulin response to glucose may determine greater free Fatty Acid clearance in African-American women. J Clin Endocrinol Metab 2011, 96:2456-2463.
  • [13]Zheng C, Ikewaki K, Walsh BW, Sacks FM: Metabolism of apoB lipoproteins of intestinal and hepatic origin during constant feeding of small amounts of fat. J Lipid Res 2006, 47:1771-1779.
  • [14]Alaupovic P: Significance of apolipoproteins for structure, function, and classification of plasma lipoproteins. Methods Enzymol 1996, 263:32-60.
  • [15]Campos H, Perlov D, Khoo C, Sacks FM: Distinct patterns of lipoproteins with apoB defined by presence of apoE or apoC-III in hypercholesterolemia and hypertriglyceridemia. J Lipid Res 2001, 42:1239-1249.
  • [16]Zheng C, Khoo C, Ikewaki K, Sacks FM: Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res 2007, 48:1190-1203.
  • [17]Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC: Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol 1995, 15:963-971.
  • [18]Zheng C, Khoo C, Furtado J, Sacks FM: Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 2010, 121:1722-1734.
  • [19]Altomonte J, Cong L, Harbaran S, et al.: Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 2004, 114:1493-1503.
  • [20]Dallinga-Thie GM, Groenendijk M, Blom RN, De Bruin TW, De Kant E: Genetic heterogeneity in the apolipoprotein C-III promoter and effects of insulin. J Lipid Res 2001, 42:1450-1456.
  • [21]Li WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T: Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest 1995, 96:2601-2605.
  • [22]Sumner AE, Luercio MF, Frempong BA, et al.: Validity of the reduced-sample insulin modified frequently-sampled intravenous glucose tolerance test using the nonlinear regression approach. Metabolism 2009, 58:220-225.
  • [23]Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN: MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther 2003, 5:1003-1015.
  • [24]Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. The National Academies Press; 2006. http://www.nap.edu/openbook.php?record_id=11537 webcite
  • [25]Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO: A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990, 51:241-247.
  • [26]Cordain L, Eaton SB, Sebastian A, et al.: Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005, 81:341-354.
  • [27]Nielsen S, Sumner AE, Miller BV III, Turkova H, Klein S, Jensen MD: Free fatty acid flux in African American and Caucasian adults - effect of sex and race. Obesity (Silver Spring) 2013, 21:1836-1842.
  • [28]Sumner AE, Sen S, Ricks M, Frempong BA, Sebring NG, Kushner H: Determining the waist circumference in African Americans which best predicts insulin resistance. Obesity (Silver Spring) 2008, 16:841-846.
  • [29]Guerrero R, Vega GL, Grundy SM, Browning JD: Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 2009, 49:791-801.
  • [30]Lee SJ, Campos H, Moye LA, Sacks FM: LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol 2003, 23:853-858.
  • [31]Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM: Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation 2011, 124:2065-2072.
  • [32]Mahley RW, Rall SC Jr: Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000, 1:507-537.
  • [33]Furtado JD, Campos H, Sumner AE, Appel LJ, Carey VJ, Sacks FM: Dietary interventions that lower lipoproteins containing apolipoprotein C-III are more effective in whites than in blacks: results of the OmniHeart trial. Am J Clin Nutr 2010, 92:714-722.
  文献评价指标  
  下载次数:8次 浏览次数:23次