期刊论文详细信息
Stem Cell Research & Therapy
Tissues from equine cadaver ligaments up to 72 hours of post-mortem: a promising reservoir of stem cells
Nadine Antoine2  Etienne Baise5  Delphine Connan4  Céline Tonus1  Olivier Waroux2  Joëlle Piret2  Annick Gabriel3  Mohamad Khir Shikh Alsook3 
[1] Embryology Unit, FARAH Research Center & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium;Histology Unit, FARAH Research Center & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium;Anatomy Unit, FARAH Research Center & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium;Embryology Unit, GIGA-Development, Stem Cells and Regenerative Medicine and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium;FARAH Research Center & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
关键词: TEM;    GFAP;    TUJ-1;    SSEA-1;    OCT-4;    Mesenchymal stem cells;    Ligament;    Cadaver;    Equine;   
Others  :  1235193
DOI  :  10.1186/s13287-015-0250-7
 received in 2015-07-25, accepted in 2015-12-01,  发布年份 2015
【 摘 要 】

Background

Mesenchymal stem cells (MSCs) harvested from cadaveric tissues represent a promising approach for regenerative medicine. To date, no study has investigated whether viable MSCs could survive in cadaveric tissues from tendon or ligament up to 72 hours of post-mortem. The purpose of the present work was to find out if viable MSCs could survive in cadaveric tissues from adult equine ligaments up to 72 hours of post-mortem, and to assess their ability (i) to remain in an undifferentiated state and (ii) to divide and proliferate in the absence of any specific stimulus.

Methods

MSCs were isolated from equine cadaver (EC) suspensory ligaments within 48–72 hours of post-mortem. They were evaluated for viability, proliferation, capacity for tri-lineage differentiation, expression of cell surface markers (CD90, CD105, CD73, CD45), pluripotent transcription factor (OCT-4), stage-specific embryonic antigen-1 (SSEA-1), neuron-specific class III beta-tubulin (TUJ-1), and glial fibrillary acidic protein (GFAP). As well, they were characterized by transmission electron microscope (TEM).

Results

EC-MSCs were successfully isolated and maintained for 20 passages with high cell viability and proliferation. Phase contrast microscopy revealed that cells with fibroblast-like appearance were predominant in the culture. Differentiation assays proved that EC-MSCs are able to differentiate towards mesodermal lineages (osteogenic, adipogenic, chondrogenic). Flow cytometry analysis demonstrated that EC-MSCs expressed CD90, CD105, and CD73, while being negative for the leukocyte common antigen CD45. Immunofluorescence analysis showed a high percentage of positive cells for OCT-4 and SSEA-1. Surprisingly, in absence of any stimuli, some adherent cells closely resembling neuronal and glial morphology were also observed. Interestingly, our results revealed that approximately 15 % of the cell populations were TUJ-1 positive, whereas GFAP expression was detected in only a few cells. Furthermore, TEM analysis confirmed the stemness of EC-MSCs and identified some cells with a typical neuronal morphology.

Conclusions

Our findings raise the prospect that the tissues harvested from equine ligaments up to 72 hours of post-mortem represent an available reservoir of specific stem cells. EC-MSCs could be a promising alternative source for tissue engineering and stem cell therapy in equine medicine.

【 授权许可】

   
2015 Shikh Alsook et al.

附件列表
Files Size Format View
Fig. 5. 153KB Image download
Fig. 4. 36KB Image download
Fig. 3. 16KB Image download
Fig. 2. 114KB Image download
Fig. 1. 51KB Image download
Fig. 5. 153KB Image download
Fig. 4. 36KB Image download
Fig. 3. 16KB Image download
Fig. 2. 114KB Image download
Fig. 1. 51KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Gade NE, Pratheesh M, Nath A, Dubey PK: Therapeutic potential of stem cells in veterinary practice. Vet World. 2012, 5:499-507.
  • [2]Koch TG, Berg LC, Betts DH: Current and future regenerative medicine—principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J. 2009, 50:155-65.
  • [3]Frisbie D, Smith R: Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J. 2010, 42:86-9.
  • [4]Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G: How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33:136-43.
  • [5]Heidari B, Shirazi A, Akhondi MM, Hassanpour H, Behzadi B, Naderi MM, et al.: Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue. Avicenna J Med Biotech. 2013, 5:104-17.
  • [6]Semon JA, Maness C, Zhang X, Sharkey SA, Beuttler MM, Shah FS, et al.: Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther. 2014, 5:2. BioMed Central Full Text
  • [7]Zhang X, Li F, Miao Z, Xu Y, Zheng S: Transplantation of human amniotic mesenchymal in the treatment of focal cerebral ischemia. Anat Physiol. 2012, 6:625-30.
  • [8]Durando M, Zarucco L, Schaer T, Ross M, Reef V: Pneumopericardium in a horse secondary to sternal bone marrow aspiration. Equine Vet Educ. 2006, 18:75-9.
  • [9]Richardson LE, Dudhia J, Clegg PD, Smith R: Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol. 2007, 25:409-16.
  • [10]Li CD, Zhang WY, Li HL, Jiang X, Zhang Y, Tang P, et al.: Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res. 2005, 15:539-47.
  • [11]Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N: Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy. 2012, 28:1018-29.
  • [12]Saad FA, Leong DJ, Wanich TS, Gruson KI, Sun HB: Tendon stem cell: a possible solution for tendon injury repair and aging. Ann Orthop Rheumatol. 2013, 1:1004-5.
  • [13]Hodgetts SI, Stagg K, Sturm M, Edel M, Blancafort P: Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies. Int J Biochem Cell Biol. 2014, 56:74-81.
  • [14]Mansilla E, Mártire K, Roque G, Tau J, Marín G, Castuma M, et al.: Salvage of cadaver stem cells (CSCs) as a routine procedure: history or future for regenerative medicine. J Transplant Technol Res 2013.
  • [15]Senn P, Oshima K, Teo D, Grimm C, Heller S: Robust postmortem survival of murine vestibular and cochlear stem cells. J Assoc Res Otolaryngol. 2007, 8:194-204.
  • [16]Hasegawa A, Yamada C, Tani M, Hirano SJ, Tokumoto Y, Miyake J: Caspase inhibitors increase the rate of recovery of neural stem/progenitor cells from post-mortem rat brains stored at room temperature. J Biosci Bioeng. 2009, 107:652-7.
  • [17]Valente S, Alviano F, Ciavarella C, Buzzi M, Ricci F, Tazzari PL, et al.: Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years. Stem Cell Res Ther. 2014, 5:8. BioMed Central Full Text
  • [18]Suda T, Arai F, Shimmura S: Regulation of stem cells in the niche. Cornea. 2005, 24:12-7.
  • [19]Suda T, Takubo K, Semenza GL: Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011, 9:298-310.
  • [20]Shikh Alsook MK, Antoine N, Piret J, Moula N, Busoni V, Denoix JM, et al.: Morphometric analyses of the body and the branches of the normal third interosseous muscle (suspensory ligament) in Standardbreds. Anat Histol Embryol. 2013, 42:461-70.
  • [21]Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tárnok A, et al.: Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A. 2014, 85:678-87.
  • [22]De Schauwer C, Piepers S, Van de Walle GR, Demeyere K, Hoogewijs MK, Govaere JL, et al.: In search for cross‐reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry A. 2012, 81:312-23.
  • [23]De Schauwer C, Van de Walle G, Piepers S, Hoogewijs M, Govaere J, Meyer E, et al.: Successful isolation of equine mesenchymal stromal cells from cryopreserved umbilical cord blood‐derived mononuclear cell fractions. Equine Vet J. 2013, 45:518-22.
  • [24]Pascucci L, Curina G, Mercati F, Marini C, Dall’Aglio C, Paternesi B, et al.: Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria. Vet Immunol Immunopathol. 2011, 144:499-506.
  • [25]Braun J, Hack A, Weis-Klemm M, Conrad S, Treml S, Kohler K, et al.: Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am J Vet Res. 2010, 71:1228-36.
  • [26]De Schauwer C, Goossens K, Piepers S, Hoogewijs MK, Govaere J, Smits K, et al.: Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Res Ther. 2014, 5:6. BioMed Central Full Text
  • [27]Ranera B, Lyahyai J, Romero A, Vázquez FJ, Remacha AR, Bernal ML, et al.: Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol. 2011, 144:147-54.
  • [28]Shi G, Jin Y: Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 2010, 1:39. BioMed Central Full Text
  • [29]Trubiani O, Zalzal SF, Paganelli R, Marchisio M, Giancola R, Pizzicannella J, et al.: Expression profile of the embryonic markers nanog, OCT‐4, SSEA‐1, SSEA‐4, and frizzled‐9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol. 2010, 225:123-31.
  • [30]Paris D, Stout T: Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology. 2010, 74:516-24.
  • [31]Luna AC, Madeira ME, Conceição TO, Moreira JA, Laiso RA, Maria DA: Characterization of adipose-derived stem cells of anatomical region from mice. BMC Res Notes. 2014, 7:552. BioMed Central Full Text
  • [32]Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P: Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. 2009, 10:29. BioMed Central Full Text
  • [33]Reed SA, Johnson SE: Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol. 2008, 215:329-36.
  • [34]Barboni B, Curini V, Russo V, Mauro A, Di Giacinto O, Marchisio M, et al.: Indirect co-culture with tendons or tenocytes can program amniotic epithelial cells towards stepwise tenogenic differentiation. PLoS One. 2012, 7:e30974.
  • [35]Cai TY, Zhu W, Chen XS, Zhou SY, Jia LS, Sun YQ: Fibroblast growth factor 2 induces mesenchymal stem cells to differentiate into tenocytes through the MAPK pathway. Mol Med Rep. 2013, 8:1323-8.
  • [36]Anjos-Afonso F, Siapati EK, Bonnet D: In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci. 2004, 117:5655-64.
  • [37]Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M: Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol Biol Lett. 2013, 18:163-86.
  • [38]Katsetos CD, Legido A, Perentes E, Mörk SJ: Class III β-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol. 2003, 18:851-66.
  • [39]Tischfield MA, Engle EC: Distinct α-and β-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the'multi-tubulin' hypothesis. Biosci Rep. 2010, 30:319-30.
  • [40]Kim JS, Kim J, Kim Y, Yang M, Jang H, Kang S, et al.: Differential patterns of nestin and glial fibrillary acidic protein expression in mouse hippocampus during postnatal development. J Vet Sci. 2011, 12:1-6.
  • [41]Tan SL, Ahmad TS, Selvaratnam L, Kamarul T: Isolation, characterization and the multi‐lineage differentiation potential of rabbit bone marrow‐derived mesenchymal stem cells. J Anat. 2013, 222:437-50.
  • [42]Danisovic L, Varga I, Polak S, Ulicna M, Bohmer D, Vojtassak J: Morphology of in vitro expanded human muscle-derived stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008, 152:235-8.
  • [43]Raimondo S, Penna C, Pagliaro P, Geuna S: Morphological characterization of GFP stably transfected adult mesenchymal bone marrow stem cells. J Anat. 2006, 208:3-12.
  • [44]Wenisch S, Trinkaus K, Hild A, Hose D, Heiss C, Alt V, et al.: Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. Bone. 2006, 38:911-21.
  文献评价指标  
  下载次数:160次 浏览次数:46次