| Virology Journal | |
| Characterisation of a wild-type influenza (A/H1N1) virus strain as an experimental challenge agent in humans | |
| Campbell J Bunce5  Bertrand Georges5  John J Treanor1  Peter Patriarca2  Jill Makin4  Gabriel A Faiman5  Sofie Mesens3  James N Francis5  Jeannette M Watson5  | |
| [1] University of Rochester Medical Center, 601 Elmwood Avenue, Rochester 14642, NY, USA;Biologics Consulting Group, INC, 1317 King Street, Alexandria 22314, VA, USA;SGS LSS, Clinical Research Unit, Antwerpen, Belgium;Jill Makin Consulting Ltd, 7 Cholmondeley Road, West Kirby CH48 7HB, Wirral, UK;Immune Targeting Systems Ltd, London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK | |
| 关键词: Clinical trial; Vaccine; Challenge agent; Influenza A/H1N1 virus; | |
| Others : 1131020 DOI : 10.1186/s12985-015-0240-5 |
|
| received in 2014-07-03, accepted in 2015-01-13, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Human challenge models using respiratory viruses such as influenza are increasingly utilised in the development of novel vaccines and anti-viral modalities and can provide preliminary evidence of protection before evaluation in field trials. We describe the results of a clinical study characterising an A/H1N1 influenza challenge virus in humans.
Methods
The challenge agent, influenza A/California/2009 (H1N1), was manufactured under cGMP conditions and characterised in accordance with regulatory guidelines. A dose-ascending open-label clinical study was conducted in 29 healthy young adults screened sero-negative to the challenge strain. Subjects were intranasally inoculated with three increasing doses of virus and physician-reported signs, subjected-reported symptoms, viral shedding and immunological responses were monitored.
Results
A dose-dependent increase in clinical signs and symptoms was observed with 75% of subjects developing laboratory-confirmed illness at the highest inoculum (3.5 × 106 TCID50). At the highest dose, physician or subject-reported signs of infection were classified as mild (all subjects), moderate (50%) and severe (16%) with peak symptoms recorded four days after infection. Clinical signs were correlated with nasal mucus weight (P < .001) and subject-reported symptoms (P < .001). Geometric mean peak viral shedding was log10 5.16 TCID50 and occurred three days after inoculation with a median duration of five days. The safety profile was such that physiological responses to viral infection were mainly restricted to the upper airways but were not of such severity to be of clinical concern.
Conclusions
A highly characterised wild-type Influenza A/California/2009 (H1N1) virus manufactured for clinical use was shown to induce a good infectivity profile in human volunteers. This clinical challenge model can be used for evaluating potential efficacy of vaccines and anti-viral therapeutics.
Trial registration
【 授权许可】
2015 Watson et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150228173917295.pdf | 629KB | ||
| Figure 3. | 27KB | Image | |
| Figure 2. | 25KB | Image | |
| Figure 1. | 81KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Gasparini R, Amicizia D, Lai PL, Panatto D: Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum Vaccin Immunother 2012, 8:21-8.
- [2]Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K: Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis 1998, 178:53-60.
- [3]Kang SM, Song JM, Compans RW: Novel vaccines against influenza viruses. Virus Res 2011, 162:31-8.
- [4]Osterhaus A, Fouchier R, Rimmelzwaan G: Towards universal influenza vaccines? Philos Trans R Soc Lond B Biol Sci 2011, 366:2766-73.
- [5]Gilbert SC: Advances in the development of universal influenza vaccines. Influenza Other Respir Viruses 2013, 7:750-8.
- [6]Hurt AC: The epidemiology and spread of drug resistant human influenza viruses. Curr Opin Virol 2014, 8C:22-9.
- [7]Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al.: Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 2008, 167:775-85.
- [8]Killingley B, Enstone J, Booy R, Hayward A, Oxford J, Ferguson N, et al.: Potential role of human challenge studies for investigation of influenza transmission. Lancet Infect Dis 2011, 11:879-86.
- [9]Lillie PJ, Berthoud TK, Powell TJ, Lambe T, Mullarkey C, Spencer AJ, et al.: Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP + M1, in humans. Clin Infect Dis 2012, 55:19-25.
- [10]Huang KY, Li CK, Clutterbuck E, Chui C, Wilkinson T, Gilbert A, et al.: Virus-specific antibody secreting cell, memory B-cell, and sero-antibody responses in the human influenza challenge model. J Infect Dis 2014, 209:1354-61.
- [11]McClain MT, Park LP, Nicholson B, Veldman T, Zaas AK, Turner R, et al.: Longitudinal analysis of leukocyte differentials in peripheral blood of patients with acute respiratory viral infections. J Clin Virol 2013, 58:689-95.
- [12]Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, et al.: Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012, 18:274-80.
- [13]Bagga B, Woods CW, Veldman TH, Gilbert A, Mann A, Balaratnam G, et al.: Comparing influenza and RSV viral and disease dynamics in experimentally infected adults predicts clinical effectiveness of RSV antivirals. Antivir Ther 2013, 18:785-91.
- [14]Piralla A, Daleno C, Pariani E, Conaldi P, Esposito S, Zanetti A, et al.: Virtual quantification of influenza A virus load by real-time RT-PCR. J Clin Virol 2013, 56:65-8.
- [15]Spearman C: The method of 'right and wrong cases' ('constant stimuli') without Gauss's formulae. Br J Psychol. 1908, 2:227-42.
- [16]Kaerber G: Beitrag zur Kollektiven Behandlung Pharmakologischer Reihenversuche. Arch Exp Path Pharma. 1931, 162:480-7.
PDF