期刊论文详细信息
Molecular Neurodegeneration
Tau missorting and spastin-induced microtubule disruption in neurodegeneration: Alzheimer Disease and Hereditary Spastic Paraplegia
Eva-Maria Mandelkow1  Hans Zempel1 
[1] MPI for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
关键词: Cell polarity;    Neurodegeneration;    Hereditary spastic paraplegia;    Alzheimer disease;    Amyloid-beta;    Microtubule;    TTLL6;    Spastin;    Tau;   
Others  :  1235067
DOI  :  10.1186/s13024-015-0064-1
 received in 2015-09-10, accepted in 2015-12-08,  发布年份 2015
【 摘 要 】

In Alzheimer Disease (AD), the mechanistic connection of the two major pathological hallmarks, namely deposition of Amyloid-beta (Aβ) in the form of extracellular plaques, and the pathological changes of the intracellular protein Tau (such as phosphorylation, missorting, aggregation), is not well understood. Genetic evidence from AD and Down Syndrome (Trisomy 21), and animal models thereof, suggests that aberrant production of Aβ is upstream of Tau aggregation, but also points to Tau as a critical effector in the pathological process. Yet, the cascade of events leading from increased levels of Aβ to Tau-dependent toxicity remains a matter of debate.

Using primary neurons exposed to oligomeric forms of Aβ, we have found that Tau becomes mislocalized (missorted) into the somatodendritic compartment. Missorting of Tau correlates with loss of microtubules and downstream consequences such as loss of mature spines, loss of synaptic activity, and mislocalization of mitochondria.

In this cascade, missorting of Tau induces mislocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like 6) into the dendrites. TTLL6 induces polyglutamylation of microtubules, which acts as a trigger for spastin mediated severing of dendritic microtubules. Loss of microtubules makes cells unable to maintain transport of mitochondria, which in turn results in synaptic dysfunction and loss of mature spines. These pathological changes are absent in TauKO derived primary neurons. Thus, Tau mediated mislocalization of TTLL6 and spastin activation reveals a pathological gain of function for Tau and spastin in this cellular model system of AD.

In contrast, in hereditary spastic paraplegia (HSP) caused by mutations of the gene encoding spastin (spg4 alias SPAST), spastin function in terms of microtubule severing is decreased at least for the gene product of the mutated allele, resulting in overstable microtubules in disease model systems. Whether total spastin severing activity or microtubule stability in human disease is also affected is not yet clear. No human disease has been associated so far with the long-chain polyglutamylation enzyme TTLL6, or the other TTLLs (1,5,11) possibly involved.

Here we review the findings supporting a role for Tau, spastin and TTLL6 in AD and other tauopathies, HSP and neurodegeneration, and summarize possible therapeutic approaches for AD and HSP.

【 授权许可】

   
2015 Zempel and Mandelkow.

附件列表
Files Size Format View
Figure 7. 58KB Image download
Fig. 3. 109KB Image download
Fig. 2. 101KB Image download
Fig. 1. 236KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Figure 7.

【 参考文献 】
  • [1]Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA et al.. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci. 2003; 23:6972-6981.
  • [2]Benilova I, Karran E, De Strooper B. The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci. 2012; 15:349-357.
  • [3]Bloom GS. Amyloid-beta and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA neurology. 2014; 71:505-508.
  • [4]Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord. 2013; 6:375-385.
  • [5]Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 1994; 87:554-567.
  • [6]Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991; 82:239-259.
  • [7]Braak H, Del Tredici K. Alzheimer's disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol Aging. 2004; 25:713-718.
  • [8]Brunden KR, Trojanowski JQ, Smith AB, Lee VM, Ballatore C. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. 2013; 22(18):5040-9.
  • [9]Butler R, Wood JD, Landers JA, Cunliffe VT. Genetic and chemical modulation of spastin-dependent axon outgrowth in zebrafish embryos indicates a role for impaired microtubule dynamics in hereditary spastic paraplegia. Dis. Model. Mech. 2010; 3:743-751.
  • [10]Perry G, Smith MA, Castellani RJ, Jones PK, Avila J, Paula-Barbosa M et al.. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am. J. Pathol. 2003; 162:1623-1627.
  • [11]Claudiani P, Riano E, Errico A, Andolfi G, Rugarli EI. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res. 2005; 309:358-369.
  • [12]Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2015. Nucleic acids research. 2015; 43:D662-669.
  • [13]Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM et al.. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience. 2010; 169:516-531.
  • [14]Li XJ, Denton KR, Lei L, Grenier J, Rodionov V, Blackstone C. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem cells. 2014; 32:414-423.
  • [15]Dickson DW, Kouri N, Murray ME, Josephs KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci. 2011; 45:384-389.
  • [16]Draberova E, Vinopal S, Morfini G, Liu PS, Sladkova V, Sulimenko T et al.. Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J Neuropathol Exp Neurol. 2011; 70:811-826.
  • [17]Eckert T, Le DT, Link S, Friedmann L, Woehlke G. Spastin's Microtubule-Binding Properties and Comparison to Katanin. PLoS One. 2012; 7:e50161.
  • [18]Fan Y, Wali G, Sutharsan R, Bellette B, Crane DI, Sue CM et al.. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biology open. 2014; 3:494-502.
  • [19]Fassier C, Tarrade A, Peris L, Courageot S, Mailly P, Dalard C et al.. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis. Model. Mech. 2013; 6:72-83.
  • [20]Ferrari-Toninelli G, Bonini SA, Bettinsoli P, Uberti D, Memo M. Microtubule stabilizing effect of notch activation in primary cortical neurons. Neuroscience. 2008; 154:946-952.
  • [21]Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013; 126:307-328.
  • [22]Guthrie G, Pfeffer G, Bailie M, Bradshaw K, Browning AC, Horvath R et al.. The neurological and ophthalmological manifestations of SPG4-related hereditary spastic paraplegia. J Neurol. 2013; 260:906-909.
  • [23]Sisodia S, Haass C, Kaether C, Thinakaran G. Trafficking and proteolytic processing of APP. Cold Spring Harbor perspectives in medicine. 2012; 2:a006270.
  • [24]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007; 8:101-112.
  • [25]Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009; 15:112-119.
  • [26]Havlicek S, Kohl Z, Mishra HK, Prots I, Eberhardt E, Denguir N et al.. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons. Hum Mol Genet. 2014; 23:2527-2541.
  • [27]Henson BJ, Zhu W, Hardaway K, Wetzel JL, Stefan M, Albers KM et al.. Transcriptional and post-transcriptional regulation of SPAST, the gene most frequently mutated in hereditary spastic paraplegia. PLoS One. 2012; 7:e36505.
  • [28]Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK et al.. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010; 68:1067-1081.
  • [29]Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al.. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998; 393:702-705.
  • [30]Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al.. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell. 2010; 142:387-397.
  • [31]Janke C. The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol. 2014; 206:461-472.
  • [32]Jean DC, Baas PW. It cuts two ways: microtubule loss during Alzheimer disease. EMBO J. 2013; 32:2900-2902.
  • [33]Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al.. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature. 2012; 488:96-99.
  • [34]Kanai Y, Hirokawa N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron. 1995; 14:421-432.
  • [35]Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011; 10:698-712.
  • [36]Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M et al.. Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem. 2009; 110:34-44.
  • [37]King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS. Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J Cell Biol. 2006; 175:541-546.
  • [38]Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K et al.. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol. 2010; 189:945-954.
  • [39]LaFerla FM, Green KN. Animal models of Alzheimer disease. Cold Spring Harbor perspectives in medicine. 20122
  • [40]Lee SE, Tartaglia MC, Yener G, Genc S, Seeley WW, Sanchez-Juan P et al.. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. Alzheimer disease and associated disorders. 2013; 27:302-309.
  • [41]Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK et al.. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012; 18:291-295.
  • [42]Leo L, Yu W, D'Rozario M, Waddell EA, Marenda DR, Baird MA et al.. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules. Cell reports. 2015; 12:1723-1730.
  • [43]Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 2011; 30:4825-4837.
  • [44]Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E et al.. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer's disease and related tauopathies. J Med Chem. 2014; 57:6116-6127.
  • [45]Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease. Huntington disease and X-linked mental retardation. Cell Logist. 2012; 2:117-125.
  • [46]Mc Monagle P, Byrne P, Burke T, Parfrey N, Hutchinson M. Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology. 2001; 56:139.
  • [47]Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging. 2013; 34:1523-1529.
  • [48]Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011; 70:410-426.
  • [49]Selkoe DJ, Mucke L. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harbor perspectives in med. 2012; 2:a006338.
  • [50]Ozdowski EF, Gayle S, Bao H, Zhang B, Sherwood NT. Loss of Drosophila melanogaster p21-activated kinase 3 suppresses defects in synapse structure and function caused by spastin mutations. Genetics. 2011; 189:123-135.
  • [51]Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al.. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998; 43:815-825.
  • [52]Qiang L, Yu W, Andreadis A, Luo M, Baas PW. Tau protects microtubules in the axon from severing by katanin. J Neurosci. 2006; 26:3120-3129.
  • [53]Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I et al.. Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem. 2009; 108:1277-1288.
  • [54]Mucke L, Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH et al.. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science. 2007; 316:750-754.
  • [55]Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A et al.. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010; 143:564-578.
  • [56]Salinas S, Carazo-Salas RE, Proukakis C, Schiavo G, Warner TT. Spastin and microtubules: Functions in health and disease. J Neurosci Res. 2007; 85:2778-2782.
  • [57]Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci. 2000; 20:22-33.
  • [58]Scripture CD, Figg WD, Sparreboom A. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. Curr Neuropharmacol. 2006; 4:165-172.
  • [59]Hyman BT, Serrano-Pozo A, Frosch MP, Masliah E. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor perspec in med. 2011; 1:a006189.
  • [60]Shoukier M, Neesen J, Sauter SM, Argyriou L, Doerwald N, Pantakani DV et al.. Expansion of mutation spectrum, determination of mutation cluster regions and predictive structural classification of SPAST mutations in hereditary spastic paraplegia. Eur J Hum Genet. 2009; 17:187-194.
  • [61]Baas PW, Solowska JM. Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain. 2015; 138(Pt 9):2471-84.
  • [62]Solowska JM, D'Rozario M, Jean DC, Davidson MW, Marenda DR, Baas PW. Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics. J Neurosci. 2014; 34:1856-1867.
  • [63]Solowska JM, Garbern JY, Baas PW. Evaluation of loss of function as an explanation for SPG4-based hereditary spastic paraplegia. Hum Mol Genet. 2010; 19:2767-2779.
  • [64]Solowska JM, Morfini G, Falnikar A, Himes BT, Brady ST, Huang D et al.. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci. 2008; 28:2147-2157.
  • [65]Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013; 12:609-622.
  • [66]Stone MC, Rao K, Gheres KW, Kim S, Tao J, La Rochelle C et al.. Normal spastin gene dosage is specifically required for axon regeneration. Cell reports. 2012; 2:1340-1350.
  • [67]Sudo H, Baas PW. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci. 2010; 30:7215-7226.
  • [68]Tallaksen CM, Guichart-Gomez E, Verpillat P, Hahn-Barma V, Ruberg M, Fontaine B et al.. Subtle cognitive impairment but no dementia in patients with spastin mutations. Arch Neurol. 2003; 60:1113-1118.
  • [69]Tanveer R, Gowran A, Noonan J, Keating SE, Bowie AG, Campbell VA. The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-beta and in the cortex of aged rats. J. Biol. Chem. 2012; 287:34709-34721.
  • [70]Tarrade A, Fassier C, Courageot S, Charvin D, Vitte J, Peris L et al.. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet. 2006; 15:3544-3558.
  • [71]Thies E, Mandelkow EM. Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci. 2007; 27:2896-2907.
  • [72]Timm T, von Kries JP, Li X, Zempel H, Mandelkow E, Mandelkow EM. Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J. Biol. Chem. 2011; 286:41711-41722.
  • [73]White KD, Ince PG, Lusher M, Lindsey J, Cookson M, Bashir R et al.. Clinical and pathologic findings in hereditary spastic paraparesis with spastin mutation. Neurology. 2000; 55:89-94.
  • [74]Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z et al.. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci. 2010; 30:2636-2649.
  • [75]Yang H, Ganguly A, Cabral F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J. Biol. Chem. 2010; 285:32242-32250.
  • [76]Yip L, Lee JE, Shapiro SE, Waguespack SG, Sherman SI, Hoff AO et al.. Surgical management of hereditary pheochromocytoma. J Am Coll Surg. 2004; 198:525-534.
  • [77]Yu Y, Run X, Liang Z, Li Y, Liu F, Liu Y et al.. Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J Neurochem. 2009; 108:1480-1494.
  • [78]Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E et al.. Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 2013; 32:2920-2937.
  • [79]Zempel H, Mandelkow E. Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. 2014; 37:721-732.
  • [80]Zempel H, Mandelkow EM. Linking amyloid-beta and tau: amyloid-beta induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegener Dis. 2012; 10:64-72.
  • [81]Zempel H, Thies E, Mandelkow E, Mandelkow EM. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010; 30:11938-11950.
  • [82]Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS et al.. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci. 2012; 32:3601-3611.
  • [83]Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH et al.. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet. 2001; 29:326-331.
  • [84]Zhu PP, Denton KR, Pierson TM, Li XJ, Blackstone C. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet. 2014; 23:5638-5648.
  文献评价指标  
  下载次数:34次 浏览次数:16次