期刊论文详细信息
Virology Journal
Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease
Thomas W Geisbert2  Michael A Whitt1  Karla A Fenton2  Krystle N Agans2  Robert W Cross2  Krista M Versteeg2  Chad E Mire2 
[1] Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN, USA;Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA
关键词: Immunity;    Single-injection;    Glycoprotein;    Attachment protein;    Fusion protein;    Ferret;    Vesicular stomatitis virus;    Vaccine;    Henipavirus;    Nipah virus;   
Others  :  820035
DOI  :  10.1186/1743-422X-10-353
 received in 2013-11-21, accepted in 2013-12-03,  发布年份 2013
PDF
【 摘 要 】

Background

Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection.

Methods and results

Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1.

Conclusions

These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.

【 授权许可】

   
2013 Mire et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712022455356.pdf 3780KB PDF download
Figure 7. 135KB Image download
Figure 6. 111KB Image download
Figure 5. 187KB Image download
Figure 4. 227KB Image download
Figure 3. 100KB Image download
Figure 2. 53KB Image download
Figure 1. 107KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Wang L, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton BT: Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001, 3:279-287.
  • [2]Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Abdul Rahman S, Hughes T, Smith C, Field HE: Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 2011, 85:946.
  • [3]Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT: Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999, 354:1257-1259.
  • [4]Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A: Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006, 12:235-240.
  • [5]Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, et al.: Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007, 13:1031-1037.
  • [6]Luby SP, Gurley ES: Epidemiology of henipavirus disease in humans. Curr Top Microbiol Immunol 2012, 359:25-40.
  • [7]Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF: Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004, 78:834-840.
  • [8]Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M: Recombinant nipah virus vaccines protect pigs against challenge. J Virol 2006, 80:7929-7938.
  • [9]Ploquin A, Szecsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A: Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 2013, 207:469-478.
  • [10]McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN: A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 2008, 26:3842-3852.
  • [11]Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K, Russell G, Green D, McEachern J, Pritchard LI, Eaton BT, et al.: Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 2006, 80:12293-12302.
  • [12]Pallister JA, Klein R, Arkinstall R, Haining J, Long F, White JR, Payne J, Feng YR, Wang LF, Broder CC, Middleton D: Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months. Virol J 2013, 10:237. BioMed Central Full Text
  • [13]Pallister J, Middleton D, Wang LF, Klein R, Haining J, Robinson R, Yamada M, White J, Payne J, Feng YR, et al.: A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine 2011, 29:5623-5630.
  • [14]Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, Geisbert JB, Feng YR, Chan YP, Hickey AC: A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med 2012, 4:146ra107.
  • [15]Reuter JD, Vivas-Gonzalez BE, Gomez D, Wilson JH, Brandsma JL, Greenstone HL, Rose JK, Roberts A: Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbit papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J Virol 2002, 76:8900-8909.
  • [16]Roberts A, Reuter JD, Wilson JH, Baldwin S, Rose JK: Complete protection from papillomavirus challenge after a single vaccination with a vesicular stomatitis virus vector expressing high levels of L1 protein. J Virol 2004, 78:3196-3199.
  • [17]Egan MA, Chong SY, Rose NF, Megati S, Lopez KJ, Schadeck EB, Johnson JE, Masood A, Piacente P, Druilhet RE, et al.: Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res Hum Retroviruses 2004, 20:989-1004.
  • [18]Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, Montefiori D, Roberts A, Buonocore L, Rose JK: An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 2001, 106:539-549.
  • [19]Rose NF, Roberts A, Buonocore L, Rose JK: Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 2000, 74:10903-10910.
  • [20]Roberts A, Buonocore L, Price R, Forman J, Rose JK: Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 1999, 73:3723-3732.
  • [21]Schlereth B, Buonocore L, Tietz A, Meulen Vt V, Rose JK, Niewiesk S: Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. J Gen Virol 2003, 84:2145-2151.
  • [22]Schlereth B, Rose JK, Buonocore L, ter Meulen V, Niewiesk S: Successful vaccine-induced seroconversion by single-dose immunization in the presence of measles virus-specific maternal antibodies. J Virol 2000, 74:4652-4657.
  • [23]Johnson JE, McNeil LK, Megati S, Witko SE, Roopchand VS, Obregon JH, Illenberger DM, Kotash CS, Nowak RM, Braunstein E, et al.: Non-propagating, recombinant vesicular stomatitis virus vectors encoding respiratory syncytial virus proteins generate potent humoral and cellular immunity against RSV and are protective in mice. Immunol Lett 2013, 150:134-144.
  • [24]Kahn JS, Roberts A, Weibel C, Buonocore L, Rose JK: Replication-competent or attenuated, nonpropagating vesicular stomatitis viruses expressing respiratory syncytial virus (RSV) antigens protect mice against RSV challenge. J Virol 2001, 75:11079-11087.
  • [25]Kapadia SU, Rose JK, Lamirande E, Vogel L, Subbarao K, Roberts A: Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 2005, 340:174-182.
  • [26]Chattopadhyay A, Wang E, Seymour R, Weaver SC, Rose JK: A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. J Virol 2013, 87:395-402.
  • [27]Garbutt M, Liebscher R, Wahl-Jensen V, Jones S, Moller P, Wagner R, Volchkov V, Klenk HD, Feldmann H, Stroher U: Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J Virol 2004, 78:5458-5465.
  • [28]Chattopadhyay A, Rose JK: Complementing defective viruses that express separate paramyxovirus glycoproteins provide a new vaccine vector approach. J Virol 2011, 85:2004-2011.
  • [29]Lo MK, Bird BH, Chattopadhyay A, Drew CP, Martin BE, Coleman JD, Rose JK, Nichol ST, Spiropoulou CF: Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Res 2013., 101C26-29. doi: 10.1016/j.antiviral.2013.10.012
  • [30]Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, et al.: A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 2009, 5:e1000642.
  • [31]Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, Marsh GA: Transmission routes for Nipah virus from Malaysia and Bangladesh. Emerg Infect Dis 2012, 18: . (12):1983-93. doi: 10.3201/eid1812.120875
  • [32]Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN, Broder CC: Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 2010, 5:e10690.
  • [33]Whitt MA: Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 2010, 169:365-374.
  • [34]Mendez D, Buttner P, Speare R: Response of Australian veterinarians to the announcement of a Hendra virus vaccine becoming available. Aust Vet J 2013, 91:328-331.
  • [35]Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H, Horvat B: Type I interferon signaling protects mice from lethal henipavirus infection. J Infect Dis 2013, 207:142-151.
  • [36]Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW: Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 2007, 136:266-272.
  • [37]Berhane Y, Weingartl HM, Lopez J, Neufeld J, Czub S, Embury-Hyatt C, Goolia M, Copps J, Czub M: Bacterial infections in pigs experimentally infected with Nipah virus. Transbound Emerg Dis 2008, 55:165-174.
  • [38]Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD: Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002, 126:124-136.
  • [39]Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M: Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 2005, 79:7528-7534.
  • [40]Georges-Courbot MC, Contamin H, Faure C, Loth P, Baize S, Leyssen P, Neyts J, Deubel V: Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 2006, 50:1768-1772.
  • [41]Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, Deubel V, Buckland R, Wild TF: Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 2006, 80:1972-1978.
  • [42]Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H: Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 2011, 85:7658-7671.
  • [43]Pallister J, Middleton D, Crameri G, Yamada M, Klein R, Hancock TJ, Foord A, Shiell B, Michalski W, Broder CC: Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol 2009, 83:11979-11982.
  • [44]Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY, Murri S, Loth P, Tordo N, Wild F, Horvat B, Contamin H: Experimental infection of squirrel monkeys with Nipah virus. Emerg Infect Dis 2010, 16:507-510.
  文献评价指标  
  下载次数:0次 浏览次数:6次