Clinical Epigenetics | |
Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex | |
Karin B. Michels2  Carmen J. Marsit1  Corina Lesseur1  Jessica LaRocca2  Alexandra M. Binder3  | |
[1] Department of Pharmacology and Toxicology, and Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover 03755, NH, USA;Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave., Boston 02115, MA, USA;Department of Epidemiology, Harvard School of Public Health, Boston 02115, MA, USA | |
关键词: Human leukocyte antigen; Transcriptome; Methylome; Gestational diabetes; | |
Others : 1225921 DOI : 10.1186/s13148-015-0116-y |
|
received in 2015-03-17, accepted in 2015-07-21, 发布年份 2015 | |
【 摘 要 】
Background
Gestational diabetes mellitus (GDM) affects approximately 10 % of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM.
Results
To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 BeadChips) and expression (Affymetrix transcriptome microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. This differential methylation and expression may be capturing shifts in cellular composition, reflecting physiological changes in the placenta associated with GDM.
Conclusions
Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into how GDM shapes the intrauterine environment, which may have implications for fetal (re)programming.
【 授权许可】
2015 Binder et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150922091533763.pdf | 1781KB | download | |
Fig. 3. | 51KB | Image | download |
Fig. 2. | 128KB | Image | download |
Fig. 1. | 61KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Reece EA, Leguizamón G, Wiznitzer A: Gestational diabetes: the need for a common ground. Lancet 2009, 373:1789-1797.
- [2]Ferrara A: Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care 2007, 30(Suppl 2):S141-146.
- [3]Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EA: Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in normal pregnant women. Am J Obstet Gynecol 1992, 167(4 Pt 1):913-919.
- [4]Friedman JE, Ishizuka T, Shao J, Huston L, Highman T, Catalano P: Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes 1999, 48:1807-1814.
- [5]O’Sullivan JB: Body weight and subsequent diabetes mellitus. JAMA 1982, 248:949-952.
- [6]Moore TR: Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol 2010, 202:643-649.
- [7]Taricco E, Radaelli T, Nobile de Santis MS, Cetin I: Foetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta 2003, 24:343-347.
- [8]Gauster M, Desoye G, Tötsch M, Hiden U: The placenta and gestational diabetes mellitus. Curr Diab Rep 2012, 12:16-23.
- [9]Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A: The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011, 15:3061-3100.
- [10]Colomiere M, Permezel M, Riley C, Desoye G, Lappas M: Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol Eur Fed Endocr Soc 2009, 160:567-578.
- [11]Gaither K, Quraishi AN, Illsley NP: Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab 1999, 84:695-701.
- [12]Desoye G, Gauster M, Wadsack C: Placental transport in pregnancy pathologies. Am J Clin Nutr 2011, 94(6 Suppl):1896S-1902S.
- [13]Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM: What factors determine placental glucose transfer kinetics? Placenta 2013, 34:953-958.
- [14]Weintrob N, Karp M, Hod M: Short- and long-range complications in offspring of diabetic mothers. J Diabetes Complications 1996, 10:294-301.
- [15]Catalano PM, Thomas A, Huston-Presley L, Amini SB: Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol 2003, 189:1698-1704.
- [16]Cetin I, de Santis MSN, Taricco E, Radaelli T, Teng C, Ronzoni S, et al.: Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol 2005, 192:610-617.
- [17]Sánchez-Vera I, Bonet B, Viana M, Quintanar A, Martín MD, Blanco P, et al.: Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metabolism 2007, 56:1527-1533.
- [18]Barker DJ: In utero programming of chronic disease. Clin Sci Lond Engl 1979 1998, 95:115-128.
- [19]Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008, 359:61-73.
- [20]Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel J-C, et al.: Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011, 32:159-224.
- [21]Enquobahrie DA, Williams MA, Qiu C, Meller M, Sorensen TK: Global placental gene expression in gestational diabetes mellitus. Am J Obstet Gynecol 2009, 200:206.
- [22]Radaelli T, Lepercq J, Varastehpour A, Basu S, Catalano PM, Hauguel-De Mouzon S: Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol 2009, 201:209.
- [23]Radaelli T, Varastehpour A, Catalano P, Mouzon SH: Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003, 52:2951-2958.
- [24]Zhao Y-H, Wang D-P, Zhang L-L, Zhang F, Wang D-M, Zhang W-Y: Genomic expression profiles of blood and placenta reveal significant immune-related pathways and categories in Chinese women with gestational diabetes mellitus. Diabet Med 2011, 28:237-246.
- [25]Ruchat S-M, Houde A-A, Voisin G, St-Pierre J, Perron P, Baillargeon J-P, et al.: Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013, 8:935-943.
- [26]Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al.: Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet 2015, 24:3021-3029.
- [27]Cho YM, Kim TH, Lim S, Choi SH, Shin HD, Lee HK, et al.: Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 2009, 52:253-261.
- [28]Lauenborg J, Grarup N, Damm P, Borch-Johnsen K, Jørgensen T, Pedersen O, et al.: Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab 2009, 94:145-150.
- [29]Thorand B, Löwel H, Schneider A, Kolb H, Meisinger C, Fröhlich M, et al.: C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984–1998. Arch Intern Med 2003, 163:93-99.
- [30]Taniguchi A, Nagasaka S, Fukushima M, Sakai M, Okumura T, Yoshii S, et al.: C-reactive protein and insulin resistance in non-obese Japanese type 2 diabetic patients. Metabolism 2002, 51:1578-1581.
- [31]Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286:327-334.
- [32]Freeman DJ, Norrie J, Caslake MJ, Gaw A, Ford I, Lowe GDO, et al.: C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 2002, 51:1596-1600.
- [33]Qiu C, Sorensen TK, Luthy DA, Williams MA: A prospective study of maternal serum C-reactive protein (CRP) concentrations and risk of gestational diabetes mellitus. Paediatr Perinat Epidemiol 2004, 18:377-384.
- [34]Lain KY, Catalano PM: Metabolic changes in pregnancy. Clin Obstet Gynecol 2007, 50:938-948.
- [35]Colomiere M, Permezel M, Lappas M: Diabetes and obesity during pregnancy alter insulin signalling and glucose transporter expression in maternal skeletal muscle and subcutaneous adipose tissue. J Mol Endocrinol 2010, 44:213-223.
- [36]Desoye G, Hauguel-de Mouzon S: The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care 2007, 30 Suppl 2:S120-126.
- [37]Lappas M, Mitton A, Mittion A, Permezel M: In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J Endocrinol 2010, 204:75-84.
- [38]Hivert M-F, Sullivan LM, Fox CS, Nathan DM, D’Agostino RB Sr, Wilson PWF, et al.: Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab 2008, 93:3165-3172.
- [39]Ouchi N, Parker JL, Lugus JJ, Walsh K: Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011, 11:85-97.
- [40]Stankov K, Benc D, Draskovic D: Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 2013, 132:1112-1122.
- [41]Nejentsev S, Howson JMM, Walker NM, Szeszko J, Field SF, Stevens HE, et al.: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007, 450:887-892.
- [42]Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al.: HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008, 57:1084-1092.
- [43]Mauricio D, de Leiva A: Autoimmune gestational diabetes mellitus: a distinct clinical entity? Diabetes Metab Res Rev 2001, 17:422-428.
- [44]Törn C, Gupta M, Sanjeevi CB, Aberg A, Frid A, Landin-Olsson M: Different HLA-DR-DQ and MHC class I chain-related gene A (MICA) genotypes in autoimmune and nonautoimmune gestational diabetes in a Swedish population. Hum Immunol 2004, 65:1443-1450.
- [45]Papadopoulou A, Lynch KF, Shaat N, Nilsson A, Lernmark B, Berntorp K, et al.: The type 1 diabetes protective HLA DQB1*0602 allele is less frequent in gestational diabetes mellitus. Diabetologia 2009, 52:1339-1342.
- [46]Damm P, Kühl C, Buschard K, Jakobsen BK, Svejgaard A, Sodoyez-Goffaux F, et al.: Prevalence and predictive value of islet cell antibodies and insulin autoantibodies in women with gestational diabetes. Diabet Med J Br Diabet Assoc 1994, 11:558-563.
- [47]Füchtenbusch M, Ferber K, Standl E, Ziegler AG: Prediction of type 1 diabetes postpartum in patients with gestational diabetes mellitus by combined islet cell autoantibody screening: a prospective multicenter study. Diabetes 1997, 46:1459-1467.
- [48]Nilsson C, Ursing D, Törn C, Aberg A, Landin-Olsson M: Presence of GAD antibodies during gestational diabetes mellitus predicts type 1 diabetes. Diabetes Care 2007, 30:1968-1971.
- [49]Steinborn A, Saran G, Schneider A, Fersis N, Sohn C, Schmitt E: The presence of gestational diabetes is associated with increased detection of anti-HLA-class II antibodies in the maternal circulation. Am J Reprod Immunol N Y N 1989 2006, 56:124-134.
- [50]Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al.: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012, 13:86. BioMed Central Full Text
- [51]Michels KB, Harris HR, Barault L: Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011., 6Article ID e25254
- [52]Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al.: High density DNA methylation array with single CpG site resolution. Genomics 2011, 98:288-295.
- [53]Marsit CJ, Lambertini L, Maccani MA, Koestler DC, Houseman EA, Padbury JF, et al.: Placenta-imprinted gene expression association of infant neurobehavior. J Pediatr 2012, 160:854-860.
- [54]Marsit CJ, Maccani MA, Padbury JF, Lester BM: Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 2012., 7Article ID e33794
- [55]Marabita F, Almgren M, Lindholm ME, Ruhrmann S, Fagerström-Billai F, Jagodic M, et al.: An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics 2013, 8:333-346.
- [56]Du P, Kibbe WA, Lin SM: lumi: a pipeline for processing Illumina microarray. Bioinforma Oxf Engl 2008, 24:1547-1548.
- [57]Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC: A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 2013, 14:293. BioMed Central Full Text
- [58]Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al.: A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinforma Oxf Engl 2013, 29:189-196.
- [59]Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al.: Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 2013, 6:4. BioMed Central Full Text
- [60]Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al.: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010, 11:733-739.
- [61]Teschendorff AE, Zhuang J, Widschwendter M: Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinforma Oxf Engl 2011, 27:1496-1505.
- [62]Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al.: Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 2012, 41:200-209.
- [63]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat Oxf Engl 2003, 4:249-264.
- [64]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinforma Oxf Engl 2003, 19:185-193.
- [65]Jiang J, Conrath D: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. In International Conference Research on Computational Linguistics, Taiwan; 1997.
- [66]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci 2003, 100:9440-9445.