Journal of Translational Medicine | |
Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance | |
Arash Rafii5  Frank Le Foll4  Shahin Rafii5  Ludovic Galas1  Massoud Mirshahi3  Arthur Jacob2  Nadine Abu-Kaoud2  Mahtab Maleki2  Pegah Ghiabi2  Hamda Al Thawadi2  Bella S Guerrouahen5  Jennifer Pasquier5  | |
[1] Primacen Cellular Imaging Platform, University of Rouen, Mont-Saint-Aignan 76821, France;Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar;UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Medecine, Paris Cedex 06 75270, France;Laboratory of Ecotoxicology, University of Le Havre, Le Havre 76058, France;Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA | |
关键词: Chemoresistance; Cancer cells; Endothelial cells; Intercellular transfer; Tunneling nanotubes; | |
Others : 827691 DOI : 10.1186/1479-5876-11-94 |
|
received in 2013-02-05, accepted in 2013-03-27, 发布年份 2013 | |
【 摘 要 】
Our vision of cancer has changed during the past decades. Indeed tumors are now perceived as complex entities where tumoral and stromal components interact closely. Among the different elements of tumor stroma the cellular component play a primordial role. Bone Marrow derived mesenchymal cells (MSCs) are attracted to tumor sites and support tumor growth. Endothelial cells (ECs) play a major role in angiogenesis. While the literature documents many aspects of the cross talk between stromal and cancer cells, the role of direct hetero-cellular contact is not clearly established. Recently, Tunneling nanotubes (TnTs) have been shown to support cell-to-cell transfers of plasma membrane components, cytosolic molecules and organelles within cell lines. Herein, we have investigated the formation of heterocellular TnTs between stromal (MSCs and ECs) and cancer cells. We demonstrate that TnTs occur between different cancer cells, stromal cells and cancer-stromal cell lines. We showed that TnTs-like structure occurred in 3D anchorage independent spheroids and also in tumor explant cultures. In our culture condition, TnTs formation occurred after large membrane adhesion. We showed that intercellular transfers of cytoplasmic content occurred similarly between cancer cells and MSCs or ECs, but we highlighted that the exchange of mitochondria occurred preferentially between endothelial cells and cancer cells. We illustrated that the cancer cells acquiring mitochondria displayed chemoresistance. Our results illustrate the perfusion-independent role of the endothelium by showing a direct endothelial to cancer cell mitochondrial exchange associated to phenotypic modulation. This supports another role of the endothelium in the constitution of the metastatic niche.
【 授权许可】
2013 Pasquier et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713175439643.pdf | 1816KB | download | |
Figure 6. | 131KB | Image | download |
Figure 5. | 149KB | Image | download |
Figure 4. | 181KB | Image | download |
Figure 3. | 81KB | Image | download |
Figure 2. | 159KB | Image | download |
Figure 1. | 138KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer 2009, 9:239-252.
- [2]Udagawa T, Wood M: Tumor-stromal cell interactions and opportunities for therapeutic intervention. Curr Opin Pharmacol 2010, 10:369-374.
- [3]Tlsty TD, Coussens LM: Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006, 1:119-150.
- [4]Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, Tomchuck SL, Honer zu Bentrup K, Danka ES, Henkle SL, Scandurro AB: The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 2009, 106:3806-3811.
- [5]Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009, 4:e4992.
- [6]Martinet L, Poupot R, Mirshahi P, Rafii A, Fournie JJ, Mirshahi M, Poupot M: Hospicells derived from ovarian cancer stroma inhibit T-cell immune responses. Int J Cancer 2010, 126:2143-2152.
- [7]Pasquet M, Golzio M, Mery E, Rafii A, Benabbou N, Mirshahi P, Hennebelle I, Bourin P, Allal B, Teissie J: Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer 2010, 126:2090-2101.
- [8]Lis R, Touboul C, Mirshahi P, Ali F, Mathew S, Nolan DJ, Maleki M, Abdalla SA, Raynaud CM, Querleu D: Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer 2011, 128:715-725.
- [9]St Hill CA: Interactions between endothelial selectins and cancer cells regulate metastasis. Front Biosci 2012, 17:3233-3251.
- [10]Mierke CT: Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis? J Biophys 2008, 2008:183516.
- [11]Cirri P, Chiarugi P: Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 2012, 31:195-208.
- [12]Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438:820-827.
- [13]Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008, 14:518-527.
- [14]Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449:557-563.
- [15]Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F: Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 2012, 287:7374-7387.
- [16]Pasquier J, Magal P, Boulange-Lecomte C, Webb G, Le Foll F: Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biol Direct 2011, 6:5. BioMed Central Full Text
- [17]Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E, Mery E, Couderc B, Lis R, Capdet J: Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 2008, 3:e3894.
- [18]Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18:883-891.
- [19]Gerdes HH, Bukoreshtliev NV, Barroso JF: Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007, 581:2194-2201.
- [20]Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH: Nanotubular highways for intercellular organelle transport. Science 2004, 303:1007-1010.
- [21]Gerdes HH, Carvalho RN: Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 2008, 20:470-475.
- [22]Chinnery HR, Pearlman E, McMenamin PG: Cutting edge: Membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. J Immunol 2008, 180:5779-5783.
- [23]Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L: Dynamic imaging of mammalian neural tube closure. Dev Biol 2010, 344:941-947.
- [24]Gurke S, Barroso JF, Gerdes HH: The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 2008, 129:539-550.
- [25]Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S: Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 2005, 96:1039-1041.
- [26]Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH: Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp Cell Res 2008, 314:3669-3683.
- [27]Eugenin EA, Gaskill PJ, Berman JW: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 2009, 254:142-148.
- [28]Gerdes HH: Prions tunnel between cells. Nat Cell Biol 2009, 11:235-236.
- [29]Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F: Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-Cell P-Glycoprotein Transfers in Mcf-7 Breast Cancer Cells. J Biol Chem 2012, 287(10):7374-7387.
- [30]Abounit S, Zurzolo C: Wiring through tunneling nanotubes–from electrical signals to organelle transfer. J Cell Sci 2012, 125:1089-1098.
- [31]Lou E, Fujisawa S, Barlas A, Romin Y, Manova-Todorova K, Moore MA, Subramanian S: Tunneling Nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 2012, 5:399-403.
- [32]Seandel M, Butler JM, Kobayashi H, Hooper AT, White IA, Zhang F, Vertes EL, Kobayashi M, Zhang Y, Shmelkov SV: Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc Natl Acad Sci U S A 2008, 105:19288-19293.
- [33]Wang X, Gerdes HH: Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 1818, 2012:2082-2086.
- [34]Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, Goligorsky MS: Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 2011, 3:597-608.
- [35]Cocucci E, Racchetti G, Meldolesi J: Shedding microvesicles: artefacts no more. Trends Cell Biol 2009, 19:43-51.
- [36]Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O: Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 2007, 81:1000-1012.
- [37]Vallabhaneni K, Haller H, Dumler I: Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondria transfer via tunneling nanotubes. Stem Cells Dev 2012, 21(17):3104-3113. Epub 2012 Jul 13
- [38]Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira AL, Manova-Todorova K, Moore MA: Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 2012, 7:e33093.
- [39]Santini MT, Rainaldi G: Three-dimensional spheroid model in tumor biology. Pathobiology 1999, 67:148-157.
- [40]Marzo L, Gousset K, Zurzolo C: Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012, 3:72.
- [41]Wang Y, Cui J, Sun X, Zhang Y: Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011, 18:732-742.
- [42]Domhan S, Ma L, Tai A, Anaya Z, Beheshti A, Zeier M, Hlatky L, Abdollahi A: Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 2011, 6:e21283.
- [43]Wittig D, Wang X, Walter C, Gerdes HH, Funk RH, Roehlecke C: Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS One 2012, 7:e33195.
- [44]Spees JL, Olson SD, Whitney MJ, Prockop DJ: Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 2006, 103:1283-1288.
- [45]Oliva CR, Moellering DR, Gillespie GY, Griguer CE: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One 2011, 6:e24665.
- [46]Costantini P, Jacotot E, Decaudin D, Kroemer G: Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000, 92:1042-1053.
- [47]Galluzzi L, Larochette N, Zamzami N, Kroemer G: Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006, 25:4812-4830.
- [48]Demontis F, Dahmann C: Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev Dyn 2007, 236:3408-3418.
- [49]Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J: Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009, 11:328-336.
- [50]Gousset K, Zurzolo C: Tunnelling nanotubes: a highway for prion spreading? Prion 2009, 3:94-98.
- [51]Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008, 10:211-219.
- [52]Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH: Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci U S A 2010, 107:17194-17199.
- [53]Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, Rodriguez JJ, Gilmore A, Canonico B, Papa S, Esposti MD: Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell research 2010, 20:72-88.
- [54]Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, Grau GE: Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009, 23:1643-1649.
- [55]Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, Polycarpe D, Sadelain M, Larson SM: Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A 2005, 102:1933-1938.
- [56]Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K: Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009, 4:263-274.
- [57]Witz IP: Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 2008, 100:203-229.
- [58]Fulda S, Galluzzi L, Kroemer G: Targeting mitochondria for cancer therapy. Nature reviews Drug discovery 2010, 9:447-464.