| Cardiovascular Diabetology | |
| Treadmill running improves hindlimb arteriolar endothelial function in type 1 diabetic mice as visualized by X-ray microangiography | |
| Mikiyasu Shirai3  James T. Pearson1  Daryl O. Schwenke2  Hirotsugu Tsuchimochi3  Takashi Sonobe3  | |
| [1] Australian Synchrotron, Clayton, Australia;Department of Physiology-Heart Otago, University of Otago, Dunedin, New Zealand;Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan | |
| 关键词: Exercise training; Limb blood flow distribution; Vascular imaging; in vivo; | |
| Others : 1208994 DOI : 10.1186/s12933-015-0217-0 |
|
| received in 2015-01-18, accepted in 2015-04-18, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Vascular function is impaired in patients with diabetes, however diabetic vascular dysfunction is ameliorated by exercise training. We aimed to clarify which hindlimb arterial segments are affected by treadmill running in the hindlimbs of streptozocin-induced type 1 diabetic mice in vivo.
Methods
Mice were divided into 3 groups; healthy control, diabetic control, and diabetic-running groups. The exercise regimen was performed by treadmill level running mice for 60 min/day, for 4 weeks. Thereafter, we examined the vascular response to systemic acetylcholine administration in the left hindlimb of anesthetized-ventilated mice using either 1) X-ray microangiography to visualize the arteries or 2) ultrasonic flowmetry to record the femoral arterial blood flow.
Results
X-ray imaging clearly visualized the hindlimb arterial network (~70-250 μm diameter). The vasodilator response to acetylcholine was significantly attenuated locally in the arterioles <100 μm diameter in the diabetic group of mice compared to the control group of mice. Post-acetylcholine administration, all groups showed an increase in hindlimb vascular conductance, but the diabetic mice showed the smallest increase. Overall, compared to the diabetic mice, the treadmill-running mice exhibited a significant enhancement of the vasodilator response within the arterioles with diabetes-induced vasodilator dysfunction.
Conclusions
Diabetes impaired acetylcholine-induced vasodilator function locally in the arteries <100 μm diameter and decreased hindlimb vascular conductance responded to acetylcholine, while regular treadmill running significantly ameliorated the impaired vasodilator function, and enhanced the decreased conductance in the diabetic mice.
【 授权许可】
2015 Sonobe et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150601031933518.pdf | 1346KB | ||
| Fig. 5. | 27KB | Image | |
| Fig. 4. | 17KB | Image | |
| Fig. 3. | 34KB | Image | |
| Fig. 2. | 58KB | Image | |
| Fig. 1. | 35KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Kamata K, Miyata N, Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989; 97(2):614-8.
- [2]Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Br J Pharmacol. 1997; 121(7):1383-91.
- [3]Shi Y, Ku DD, Man RY, Vanhoutte PM. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. J Pharmacol Exp Ther. 2006; 318(1):276-81.
- [4]Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008; 88(11):1322-35.
- [5]Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007; 3(6):853-76.
- [6]Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009; 16(1):94-112.
- [7]Delbin MA, Davel AP, Couto GK, de Araujo GG, Rossoni LV, Antunes E et al.. Interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercised diabetic rats. PLoS One. 2012; 7(12):e53318.
- [8]Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ et al.. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002; 25(10):1795-801.
- [9]Chakraphan D, Sridulyakul P, Thipakorn B, Bunnag S, Huxley VH, Patumraj S. Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats. Clin Hemorheol Microcirc. 2005; 32(3):217-26.
- [10]Jasperse JL, Laughlin MH. Endothelial function and exercise training: evidence from studies using animal models. Med Sci Sports Exerc. 2006; 38(3):445-54.
- [11]Arbin V, Claperon N, Fournie-Zaluski MC, Roques BP, Peyroux J. Effects of combined neutral endopeptidase 24–11 and angiotensin-converting enzyme inhibition on femoral vascular conductance in streptozotocin-induced diabetic rats. Br J Pharmacol. 2000; 130(6):1297-304.
- [12]Kiff RJ, Gardiner SM, Compton AM, Bennett T. Selective impairment of hindquarters vasodilator responses to bradykinin in conscious Wistar rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991; 103(2):1357-62.
- [13]Kiff RJ, Gardiner SM, Compton AM, Bennett T. The effects of endothelin-1 and NG-nitro-L-arginine methyl ester on regional haemodynamics in conscious rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991; 103(2):1321-6.
- [14]Jenkins MJ, Edgley AJ, Sonobe T, Umetani K, Schwenke DO, Fujii Y et al.. Dynamic synchrotron imaging of diabetic rat coronary microcirculation in vivo. Arterioscler Thromb Vasc Biol. 2012; 32(2):370-7.
- [15]Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT et al.. Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc Diabetol. 2013; 12:111. BioMed Central Full Text
- [16]Schwenke DO, Pearson JT, Umetani K, Kangawa K, Shirai M. Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography. J Appl Physiol. 2007; 102(2):787-93.
- [17]Sonobe T, Schwenke DO, Pearson JT, Yoshimoto M, Fujii Y, Umetani K et al.. Imaging of the closed-chest mouse pulmonary circulation using synchrotron radiation microangiography. J Appl Physiol. 2011; 111(1):75-80.
- [18]Figueiredo G, Boll H, Kramer M, Groden C, Brockmann MA. In vivo X-ray digital subtraction and CT angiography of the murine cerebrovasculature using an intra-arterial route of contrast injection. AJNR Am J Neuroradiol. 2012; 33(9):1702-9.
- [19]Liu P, Sun J, Zhao J, Liu X, Gu X, Li J et al.. Microvascular imaging using synchrotron radiation. J Synchrotron Radiat. 2010; 17(4):517-21.
- [20]Shirai M, Schwenke DO, Eppel GA, Evans RG, Edgley AJ, Tsuchimochi H et al.. Synchrotron-based angiography for investigation of the regulation of vasomotor function in the microcirculation in vivo. Clin Exp Pharmacol Physiol. 2009; 36(1):107-16.
- [21]Kidoguchi K, Tamaki M, Mizobe T, Koyama J, Kondoh T, Kohmura E et al.. In vivo X-ray angiography in the mouse brain using synchrotron radiation. Stroke. 2006; 37(7):1856-61.
- [22]Schefer V, Talan MI. Oxygen consumption in adult and AGED C57BL/6 J mice during acute treadmill exercise of different intensity. Exp Gerontol. 1996; 31(3):387-92.
- [23]Fernando P, Bonen A, Hoffman-Goetz L. Predicting submaximal oxygen consumption during treadmill running in mice. Can J Physiol Pharmacol. 1993; 71(10–11):854-7.
- [24]Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B et al.. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc. 2010; 42(12):2282-303.
- [25]Shirai M, Schwenke DO, Tsuchimochi H, Umetani K, Yagi N, Pearson JT. Synchrotron radiation imaging for advancing our understanding of cardiovascular function. Circ Res. 2013; 112(1):209-21.
- [26]Figueiredo G, Brockmann C, Boll H, Heilmann M, Schambach SJ, Fiebig T et al.. Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice. Clin Neuroradiol. 2012; 22(1):21-8.
- [27]Makino A, Ohuchi K, Kamata K. Mechanisms underlying the attenuation of endothelium-dependent vasodilatation in the mesenteric arterial bed of the streptozotocin-induced diabetic rat. Br J Pharmacol. 2000; 130(3):549-56.
- [28]Lee S, Park Y, Zhang C. Exercise training prevents coronary endothelial dysfunction in type 2 diabetic mice. Am J Biomed Sci. 2011; 3(4):241-52.
- [29]Kuru O, Senturk UK, Kocer G, Ozdem S, Baskurt OK, Cetin A et al.. Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. J Appl Physiol. 2009; 107(3):896-902.
- [30]McAllister RM, Jasperse JL, Laughlin MH. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle. J Appl Physiol. 2005; 98(2):753-61.
- [31]McAllister RM, Newcomer SC, Laughlin MH. Vascular nitric oxide: effects of exercise training in animals. Appl Physiol Nutr Metab. 2008; 33(1):173-8.
- [32]Zguira MS, Vincent S, Le Douairon Lahaye S, Malarde L, Tabka Z, Saiag B. Intense exercise training is not effective to restore the endothelial NO-dependent relaxation in STZ-diabetic rat aorta. Cardiovasc Diabetol. 2013; 12:32. BioMed Central Full Text
- [33]Kindig CA, Sexton WL, Fedde MR, Poole DC. Skeletal muscle microcirculatory structure and hemodynamics in diabetes. Respir Physiol. 1998; 111(2):163-75.
- [34]Wang CH, Chen KT, Mei HF, Lee JF, Cherng WJ, Lin SJ. Assessment of mouse hind limb endothelial function by measuring femoral artery blood flow responses. J Vasc Surg. 2011; 53(5):1350-8.
- [35]Copp SW, Hageman KS, Behnke BJ, Poole DC, Musch TI. Effects of type II diabetes on exercising skeletal muscle blood flow in the rat. J Appl Physiol. 2010; 109(5):1347-53.
- [36]Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012; 55(3):542-51.
- [37]Huang HH, Farmer K, Windscheffel J, Yost K, Power M, Wright DE et al.. Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp Diabetes Res. 2011; 2011:481427.
- [38]Paulson DJ, Mathews R, Bowman J, Zhao J. Metabolic effects of treadmill exercise training on the diabetic heart. J Appl Physiol. 1992; 73(1):265-71.
- [39]Selagzi H, Buyukakilli B, Cimen B, Yilmaz N, Erdogan S. Protective and therapeutic effects of swimming exercise training on diabetic peripheral neuropathy of streptozotocin-induced diabetic rats. J Endocrinol Invest. 2008; 31(11):971-8.
- [40]Wallberg-Henriksson H, Gunnarsson R, Rossner S, Wahren J. Long-term physical training in female type 1 (insulin-dependent) diabetic patients: absence of significant effect on glycaemic control and lipoprotein levels. Diabetologia. 1986; 29(1):53-7.
PDF