Cardiovascular Diabetology | |
Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside | |
Michelle A Keske1  Stephen Rattigan1  Stephen M Richards2  Amanda J Genders3  Lei Zhang4  Eloise A Bradley1  | |
[1] Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart 7001, TAS, Australia;School of Medicine, University of Tasmania, Hobart, TAS, Australia;Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia;Garvan Institute of Medical Research, Darlinghurst, NSW, Australia | |
关键词: Microbubbles; Microcirculation; Glucose; Insulin; Muscle; | |
Others : 1221206 DOI : 10.1186/s12933-015-0251-y |
|
received in 2015-04-01, accepted in 2015-06-30, 发布年份 2015 | |
【 摘 要 】
Background
Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR.
Methods
Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R’g) was determined radioisotopically with14 C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles.
Results
AICAR did not affect blood glucose, or lower leg R’g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R’g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R’g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R’g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion.
Conclusions
AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
【 授权许可】
2015 Bradley et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150728035255432.pdf | 1226KB | download | |
Figure9. | 34KB | Image | download |
Figure8. | 11KB | Image | download |
Figure7. | 38KB | Image | download |
Figure6. | 46KB | Image | download |
Figure5. | 28KB | Image | download |
Figure4. | 33KB | Image | download |
Figure3. | 17KB | Image | download |
Figure2. | 17KB | Image | download |
Figure1. | 40KB | Image | download |
【 图 表 】
Figure1.
Figure2.
Figure3.
Figure4.
Figure5.
Figure6.
Figure7.
Figure8.
Figure9.
【 参考文献 】
- [1]Rattigan S, Clark MG, Barrett EJ. Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes. 1997; 46(9):1381-1388.
- [2]Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG et al.. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002; 51(1):42-48.
- [3]Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S et al.. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004; 53(6):1418-1423.
- [4]Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003; 285(1):E123-E129.
- [5]Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol. 1992; 262:C9-C14.
- [6]Stephens JM, Pilch PF. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev. 1995; 16:529-546.
- [7]Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006; 55(5):1436-1442.
- [8]Keske MA, Clerk LH, Price WJ, Jahn LA, Barrett EJ. Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal. Diabetes Care. 2009; 32(9):1672-1677.
- [9]Sjoberg KA, Rattigan S, Hiscock NJ, Richter EA, Kiens B. A new method to study changes in microvascular blood volume in muscle and adipose tissue: real time imaging in humans and rat. Am J Physiol Heart Circ Physiol. 2011; 301(2):H450-H458.
- [10]Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H et al.. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006; 290(6):E1191-E1197.
- [11]Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T et al.. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011; 13(3):294-307.
- [12]Premilovac D, Bradley EA, Ng HL, Richards SM, Rattigan S, Keske MA. Muscle insulin resistance resulting from impaired microvascular insulin sensitivity in Sprague Dawley rats. Cardiovasc Res. 2013; 98(1):28-36.
- [13]St Pierre P, Genders AJ, Keske MA, Richards SM, Rattigan S. Loss of insulin-mediated microvascular perfusion in skeletal muscle is associated with the development of insulin resistance. Diabetes Obes Metab. 2010; 12(9):798-805.
- [14]Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark AD, Clark MG. Insulin-mediated hemodynamic changes are impaired in muscle of zucker obese rats. Diabetes. 2002; 51(12):3492-3498.
- [15]Clark MG. Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab. 2008; 295(4):E732-E750.
- [16]Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994; 94(6):2511-2515.
- [17]Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994; 94:1172-1179.
- [18]Bradley EA, Richards SM, Keske MA, Rattigan S. Local NOS inhibition impairs vascular and metabolic actions of insulin in rat hindleg muscle in vivo. Am J Physiol Endocrinol Metab. 2013; 305(6):E745-E750.
- [19]Natali A, Quinones GA, Pecori N, Sanna G, Toschi E, Ferrannini E. Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension. 1998; 31(2):632-636.
- [20]Mahajan H, Richards SM, Rattigan S, Clark MG. Local methacholine but not bradykinin potentiates insulin-mediated glucose uptake in muscle in vivo by augmenting capillary recruitment. Diabetologia. 2004; 47(12):2226-2234.
- [21]Clark MG, Wallis MG, Barrett EJ, Vincent MA, Richards SM, Clerk LH et al.. Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol Metab. 2003; 284(2):E241-E258.
- [22]Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol. 2002; 16(8):1931-1942.
- [23]Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. CurrDiabRep. 2003; 3(4):279-288.
- [24]Bradley EA, Clark MG, Rattigan S. Acute effects of wortmannin on insulin’s hemodynamic and metabolic actions in vivo. Am J Physiol Endocrinol Metab. 2007; 292(3):E779-E787.
- [25]Bradley EA, Eringa EC, Stehouwer CD, Korstjens I, Nieuw Amerongen GP, Musters R et al.. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol. 2010; 30(6):1137-1142.
- [26]Bergeron R, Russell RR, Young LH, Ren JM, Marcucci M, Lee A et al.. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999; 276(5 Pt 1):E938-E944.
- [27]Fisher JS, Gao J, Han DH, Holloszy JO, Nolte LA. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab. 2002; 282(1):E18-E23.
- [28]Bergeron R, Previs SF, Cline GW, Perret P, Russell RR, Young LH et al.. Effect of 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes. 2001; 50(5):1076-1082.
- [29]Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998; 97(5):473-483.
- [30]Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007; 56(9):2194-2200.
- [31]Wynants J, Petrov B, Nijhof J, Van Belle H. Optimization of a high-performance liquid chromatographic method for the determination of nucleosides and their catabolies. Application to cat and rabbit heart perfusates. J Chromatogr. 1987; 386:297-308.
- [32]Laughlin MH, Armstrong RB. Rat muscle blood flows as a function of time during prolonged slow treadmill exercise. Am J Physiol. 1983; 244:H814-H824.
- [33]Morrow VA, Foufelle F, Connell JM, Petrie JR, Gould GW, Salt IP. Direct activation of AMP-activated protein kinase stimulates nitric oxide synthesis in human aortic endothelial cells. J Biol Chem. 2003; 278(34):31629-31639.
- [34]Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB et al.. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes. 2002; 51(10):2886-2894.
- [35]Iglesias MA, Furler SM, Cooney GJ, Kraegen EW, Ye JM. AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo. Diabetes. 2004; 53(7):1649-1654.
- [36]Ai H, Ihlemann J, Hellsten Y, Lauritzen HP, Hardie DG, Galbo H et al.. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab. 2002; 282(6):E1291-E1300.
- [37]Putman CT, Martins KJ, Gallo ME, Lopaschuk GD, Pearcey JA, MacLean IM et al.. Alpha-catalytic subunits of 5′AMP-activated protein kinase display fiber-specific expression and are upregulated by chronic low-frequency stimulation in rat muscle. Am J Physiol Regul Integr Comp Physiol. 2007; 293(3):R1325-R1334.
- [38]Pencek RR, Shearer J, Camacho RC, James FD, Lacy DB, Fueger PT et al.. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes. 2005; 54(2):355-360.
- [39]Camacho RC, Pencek RR, Lacy DB, James FD, Donahue EP, Wasserman DH. Portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes. 2005; 54(2):373-382.
- [40]Camacho RC, Lacy DB, James FD, Donahue EP, Wasserman DH. 5-Aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside renders glucose output by the liver of the dog insensitive to a pharmacological increment in insulin. Am J Physiol Endocrinol Metab. 2005; 289(6):E1039-E1043.
- [41]Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999; 48(8):1667-1671.
- [42]Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997; 273(6 Pt 1):E1107-E1112.
- [43]Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol. 1999; 87(5):1990-1995.
- [44]Winder WW. AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol Ther. 2000; 2(3):441-448.
- [45]Atkinson LL, Kozak R, Kelly SE, Onay Besikci A, Russell JC, Lopaschuk GD. Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. Am J Physiol Endocrinol Metab. 2003; 284(5):E923-E930.
- [46]Halse R, Fryer LG, McCormack JG, Carling D, Yeaman SJ. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes. 2003; 52(1):9-15.
- [47]Hue L, Beauloye C, Marsin AS, Bertrand L, Horman S, Rider MH. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. J Mol Cell Cardiol. 2002; 34(9):1091-1097.
- [48]Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF. 5-Aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol. 2003; 284(4):R936-R944.
- [49]Jung CH, Lee MJ, Kang YM, Lee YL, Yoon HK, Kang SW et al.. Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Diabetol. 2014; 13:41. BioMed Central Full Text
- [50]Anil TM, Harish C, Lakshmi MN, Harsha K, Onkaramurthy M, Sathish Kumar V et al.. CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models. Cardiovasc Diabetol. 2014; 13:27. BioMed Central Full Text
- [51]Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002; 51(4):1138-1145.
- [52]Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG. Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab. 2004; 287(4):E804-E809.
- [53]Inyard AC, Chong DG, Klibanov AL, Barrett EJ. Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance. Diabetes. 2009; 58(11):2457-2463.
- [54]Lee-Young RS, Bonner JS, Mayes WH, Iwueke I, Barrick BA, Hasenour CM et al.. AMP-activated protein kinase (AMPK)alpha2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Diabetologia. 2013; 56(3):608-617.