Journal of Neuroinflammation | |
Primary blast injury-induced lesions in the retina of adult rats | |
Eng-Ang Ling2  Linli Yao2  Mui Hong Tan1  Kian Chye Ng1  Jia Lu1  Enci Mary Kan1  Ying-Ying Zou2  | |
[1] Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117560, Singapore;Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Block MD10, Singapore 117597, Singapore | |
关键词: Apoptosis; Inflammation; Aquaporin-4; Vascular endothelial growth factor; Nitric oxide synthase; Retina; Blast; | |
Others : 1211887 DOI : 10.1186/1742-2094-10-79 |
|
received in 2013-02-16, accepted in 2013-06-27, 发布年份 2013 | |
【 摘 要 】
Background
The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina.
Methods
Adult male Sprague–Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL.
Results
The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury.
Conclusions
Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Müller cells and suggest important roles for these cells in retina pathophysiology after blast.
【 授权许可】
2013 Zou et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150611091419169.pdf | 12278KB | download | |
Figure 13. | 133KB | Image | download |
Figure 12. | 143KB | Image | download |
Figure 11. | 181KB | Image | download |
Figure 10. | 235KB | Image | download |
Figure 9. | 250KB | Image | download |
Figure 8. | 216KB | Image | download |
Figure 7. | 358KB | Image | download |
Figure 6. | 369KB | Image | download |
Figure 5. | 208KB | Image | download |
Figure 4. | 212KB | Image | download |
Figure 3. | 32KB | Image | download |
Figure 2. | 105KB | Image | download |
Figure 1. | 347KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
【 参考文献 】
- [1]Jager TE, Weiss HB, Coben JH, Pepe PE: Traumatic brain injuries evaluated in U.S. emergency departments, 1992–1994. Acad Emerg Med 2000, 7:134-140.
- [2]Rutland-Brown W, Langlois JA, Thomas KE, Xi YL: Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil 2006, 21:544-548.
- [3]Bhattacharjee Y: Neuroscience. Shell shock revisited: solving the puzzle of blast trauma. Science 2008, 319:406-408.
- [4]Chalioulias K, Sim KT, Scott R: Retinal sequelae of primary ocular blast injuries. J R Army Med Corps 2007, 153:124-125.
- [5]Morley MG, Nguyen JK, Heier JS, Shingleton BJ, Pasternak JF, Bower KS: Blast eye injuries: a review for first responders. Disaster Med Public Health Prep 2010, 4:154-160.
- [6]Abbotts R, Harrison SE, Cooper GL: Primary blast injuries to the eye: a review of the evidence. J R Army Med Corps 2007, 153:119-123.
- [7]Alam M, Iqbal M, Khan A, Khan SA: Ocular injuries in blast victims. J Pak Med Assoc 2012, 62:138-142.
- [8]Petras JM, Bauman RA, Elsayed NM: Visual system degeneration induced by blast overpressure. Toxicology 1997, 121:41-49.
- [9]Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, Yamamoto H, Takayama K, Tominaga T: Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma 2011, 28:1101-1119.
- [10]Wang Y, Ye Z, Hu X, Huang J, Luo Z: Morphological changes of the neural cells after blast injury of spinal cord and neuroprotective effects of sodium beta-aescinate in rabbits. Injury 2010, 41:707-716.
- [11]Chavko M, Adeeb S, Ahlers ST, McCarron RM: Attenuation of pulmonary inflammation after exposure to blast overpressure by N-acetylcysteine amide. Shock 2009, 32:325-331.
- [12]Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA: Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 2007, 212:429-439.
- [13]Zou YY, Lu J, Poon DJ, Kaur C, Cao Q, Teo AL, Ling EA: Combustion smoke exposure induces up-regulated expression of vascular endothelial growth factor, aquaporin 4, nitric oxide synthases and vascular permeability in the retina of adult rats. Neuroscience 2009, 160:698-709.
- [14]Bates DO, Harper SJ: Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 2002, 39:225-237.
- [15]Li CR, Sun SG: VEGF expression and cell apoptosis in NOD mouse retina. Int J Ophthalmol 2010, 3:224-227.
- [16]Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk DR, Gutierrez H, Serebruany VL, Curley KC, Wang KK, Hayes RL: Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front Neurol 2012, 3:15.
- [17]Liu XQ, Kobayashi H, Jin ZB, Wada A, Nao IN: Differential expression of Kir4.1 and aquaporin 4 in the retina from endotoxin-induced uveitis rat. Mol Vis 2007, 13:309-317.
- [18]Cheung SS, Leung JW, Lam AK, Lam KS, Chung SS, Lo AC, Chung SK: Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina. PLoS One 2011, 6:e26184.
- [19]Dinet V, Bruban J, Chalour N, Maoui A, An N, Jonet L, Buret A, Behar-Cohen F, Klein C, Treton J, Mascarelli F: Distinct effects of inflammation on gliosis, osmohomeostasis, and vascular integrity during amyloid beta-induced retinal degeneration. Aging Cell 2012, 11:683-693.
- [20]Janigro D, West GA, Nguyen TS, Winn HR: Regulation of blood–brain barrier endothelial cells by nitric oxide. Circ Res 1994, 75:528-538.
- [21]Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK: Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 2001, 98:2604-2609.
- [22]Konstantinova TS, Bugrova AE, Shevchenko TF, Vanin AF, Kalamkarov GR: Modification of the nitric oxide concentration regulates the development of the apoptosis in the eye retina. Biofizika 2012, 57:325-330.
- [23]Xue LP, Lu J, Cao Q, Kaur C, Ling EA: Nestin expression in Müller glial cells in postnatal rat retina and its upregulation following optic nerve transection. Neuroscience 2006, 143:117-127.
- [24]Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T, Sahel JA: Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 2005, 11:688-696.
- [25]Lamoke F, Labazi M, Montemari A, Parisi G, Varano M, Bartoli M: Trans-Chalcone prevents VEGF expression and retinal neovascularization in the ischemic retina. Exp Eye Res 2011, 93:350-354.
- [26]Hartani D, Belguendouz H, Guenane H, Chachoua L, Lahlou-Boukoffa OQ, Touil-Boukoffa C: Effect of nitrites and nitrates on bovine retina in vitro. J Fr Ophtalmol 2006, 29:32-36.
- [27]Lu J, Ng KC, Ling G, Wu J, Poon DJ, Kan EM, Tan MH, Wu YJ, Li P, Moochhala S, Yap E, Lee TK, Teo M, Yeh IB, Sergio DM, Chua F, Kumar SD, Ling EA: Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma 2012, 29:1434-1454.
- [28]Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, Agoston D: Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 2012, 33:3705-3711.
- [29]Agoston DV, Gyorgy A, Eidelman O, Pollard HB: Proteomic biomarkers for blast neurotrauma: targeting cerebral edema, inflammation, and neuronal death cascades. J Neurotrauma 2009, 26:901-911.
- [30]Sajja VS, Tenn C, McLaws LJ, Vandevord PJ: A temporal evaluation of cytokines in rats after blast exposure. Biomed Sci Instrum 2012, 48:374-379.
- [31]Brown GC, Bolanos JP, Heales SJ, Clark JB: Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 1995, 193:201-204.
- [32]Kaur C, Sivakumar V, Zhang Y, Ling EA: Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia 2006, 54:826-839.
- [33]Kroll J, Waltenberger J: VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun 1998, 252:743-746.
- [34]Jozkowicz A, Cooke JP, Guevara I, Huk I, Funovics P, Pachinger O, Weidinger F, Dulak J: Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc Res 2001, 51:773-783.
- [35]Kim JE, Ryu HJ, Yeo SI, Seo CH, Lee BC, Choi IG, Kim DS, Kang TC: Differential expressions of aquaporin subtypes in astroglia in the hippocampus of chronic epileptic rats. Neuroscience 2009, 163:781-789.
- [36]Matsuoka Y, Kitamura Y, Fukunaga R, Shimohama S, Nabeshima T, Tooyama I, Kimura H, Taniguchi T: In vivo hypoxia-induced neuronal damage in dentate gyrus of rat hippocampus: changes in NMDA receptors and the effect of MK-801. Neurochem Int 1997, 30:533-542.
- [37]Valiyaveettil M, Alamneh YA, Miller SA, Hammamieh R, Arun P, Wang Y, Wei Y, Oguntayo S, Long JB, Nambiar MP: Modulation of cholinergic pathways and inflammatory mediators in blast-induced traumatic brain injury. Chem Biol Interact 2013, 203:371-375.
- [38]Shen F, Chen B, Danias J, Lee KC, Lee H, Su Y, Podos SM, Mittag TW: Glutamate-induced glutamine synthetase expression in retinal Müller cells after short-term ocular hypertension in the rat. Invest Ophthalmol Vis Sci 2004, 45:3107-3112.
- [39]Xue LP, Lu J, Cao Q, Hu S, Ding P, Ling EA: Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 2006, 139:723-732.