期刊论文详细信息
BMC Veterinary Research
Classical swine fever virus induces oxidative stress in swine umbilical vein endothelial cells
Min Cheng2  Jihui Lin2  Wulong Liang2  Yanqin Fang2  Yanming Zhang2  Lei He1 
[1] Animal Disease and Public Security Academician Workstation of Henan province, The Key Lab of Animal Disease and Public security, Henan University of Science and Technology, Luoyang 471003, P.R. China;College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi, P.R. China
关键词: Inflammatory response;    Reactive oxygen species;    Antioxidant protein;    Oxidative stress;    Classical swine fever virus;   
Others  :  1103371
DOI  :  10.1186/s12917-014-0279-3
 received in 2014-07-11, accepted in 2014-11-11,  发布年份 2014
PDF
【 摘 要 】

Background

Classical swine fever virus (CSFV) infection causes significant losses of pigs, which is characterized by hemorrhage, disseminated intravascular coagulation and leucopenia. The swine vascular endothelial cell is a primary target cell for CSFV. The aim of this study was to determine the role of CSFV infection in inducing oxidative stress (OS) in vascular endothelial cells.

Results

We demonstrated that CSFV infection induced oxidative stress in swine umbilical vein endothelial cells (SUVECs), characterized by the induction of reactive oxygen species (ROS) production and the elevations of porcine antioxidant proteins thioredoxin (Trx), peroxiredoxin-6 (PRDX-6) and heme oxygenase-1 (HO-1) expression. Furthermore, cyclooxygenase-2 (COX-2), a pro-inflammatory protein related to oxidative stress, was up-regulated while anti-inflammatory protein peroxisome proliferator-activated receptor-γ (PPAR-γ), an important mediator in vascular functional regulation, was down-regulated in the CSFV infected cells. In addition, antioxidants showed significant inhibitory effects on the CSFV replication, indicating a close relationship between CSFV replication and OS induced in the host cells.

Conclusions

Our results indicated that CSFV infection induced oxidative stress in SUVECs. These findings provide novel information on the mechanism by which CSFV can alter intracellular events associated with the viral infection.

【 授权许可】

   
2014 He et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150201030048418.pdf 1563KB PDF download
Figure 7. 11KB Image download
Figure 6. 9KB Image download
Figure 5. 35KB Image download
Figure 4. 14KB Image download
Figure 3. 6KB Image download
Figure 2. 20KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Tang QH, Zhang YM, Xu YZ, He L, Dai C, Sun P: Up-regulation of integrin beta3 expression in porcine vascular endothelial cells cultured in vitro by classical swine fever virus. Vet Immunol Immunopathol 2010, 133(2–4):237-242.
  • [2]Dreier S, Zimmermann B, Moennig V, Greiser-Wilke I: A sequence database allowing automated genotyping of Classical swine fever virus isolates. J Virol Methods 2007, 140(1–2):95-99.
  • [3]He L, Zhang YM, Lin Z, Li WW, Wang J, Li HL: Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes 2012, 45(2):274-282.
  • [4]Tang QH, Zhang YM, Fan L, Tong G, He L, Dai C: Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol J 2010, 7:4. BioMed Central Full Text
  • [5]Graham SP, Everett HE, Johns HL, Haines FJ, La Rocca SA, Khatri M, Wright IK, Drew T, Crooke HR: Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses. Vet Microbiol 2010, 142(1–2):34-40.
  • [6]Horst HS, de Vos CJ, Tomassen FH, Stelwagen J: The economic evaluation of control and eradication of epidemic livestock diseases. Rev Sci Tech 1999, 18(2):367-379.
  • [7]Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J: Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 2009, 50(5):872-882.
  • [8]Lim W, Kwon SH, Cho H, Kim S, Lee S, Ryu WS: HBx targeting to mitochondria and ROS generation are necessary but insufficient for HBV-induced cyclooxygenase-2 expression. J Mol Med (Berl) 2010, 88(4):359-369.
  • [9]Israel N, Gougerot-Pocidalo MA: Oxidative stress in human immunodeficiency virus infection. Cell Mol Life Sci 1997, 53(11–12):864-870.
  • [10]Gaudernak E, Seipelt J, Triendl A, Grassauer A, Kuechler E: Antiviral effects of pyrrolidine dithiocarbamate on human rhinoviruses. J Virol 2002, 76(12):6004-6015.
  • [11]Schweizer M, Peterhans E: Oxidative stress in cells infected with bovine viral diarrhoea virus: a crucial step in the induction of apoptosis. J Gen Virol 1999, 80(Pt 5):1147-1155.
  • [12]Venturini D, Simao AN, Barbosa DS, Lavado EL, Narciso VE, Dichi I, Dichi JB: Increased oxidative stress, decreased total antioxidant capacity, and iron overload in untreated patients with chronic hepatitis C. Dig Dis Sci 2010, 55(4):1120-1127.
  • [13]Qadri I, Iwahashi M, Capasso JM, Hopken MW, Flores S, Schaack J, Simon FR: Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 2004, 378(Pt 3):919-928.
  • [14]Bensaude E, Turner JL, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T, Powell PP: Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 2004, 85(Pt 4):1029-1037.
  • [15]Wang CY, Yeh HI, Chang TJ, Hsiao HJ, Tsai MS, Tsai SM, Liu PA: Attenuation of nitric oxide bioavailability in porcine aortic endothelial cells by classical swine fever virus. Arch Virol 2011, 156(7):1151-1160.
  • [16]Forstermann U: Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010, 459(6):923-939.
  • [17]Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408(6809):239-247.
  • [18]Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA: Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002, 122(2):366-375.
  • [19]Meyers G, Thiel HJ: Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J Virol 1995, 69(6):3683-3689.
  • [20]Johns HL, Bensaude E, La Rocca SA, Seago J, Charleston B, Steinbach F, Drew TW, Crooke H, Everett H: Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol 2010, 91(Pt 4):1038-1046.
  • [21]Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullough KC: Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology 1999, 97(2):359-366.
  • [22]Yen YT, Chen HC, Lin YD, Shieh CC, Wu-Hsieh BA: Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 2008, 82(24):12312-12324.
  • [23]Bengtsson AA, Pettersson A, Wichert S, Gullstrand B, Hansson M, Hellmark T, Johansson AC: Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther 2014, 16(3):R120. BioMed Central Full Text
  • [24]Reshi ML, Su YC, Hong JR: RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014, 2014:467452.
  • [25]Kim YW, West XZ, Byzova TV: Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 2013, 91(3):323-328.
  • [26]Kim YW, Byzova TV: Oxidative stress in angiogenesis and vascular disease. Blood 2014, 123(5):625-631.
  • [27]Forstermann U: Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 2008, 5(6):338-349.
  • [28]Kumagai Y, Pi J: Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol Appl Pharmacol 2004, 198(3):450-457.
  • [29]Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003, 278(45):45021-45026.
  • [30]Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL: Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109(18):2221-2226.
  • [31]Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH: Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013, 19(13):1539-1605.
  • [32]Nordberg J, Arner ES: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001, 31(11):1287-1312.
  • [33]Morin P Jr, Storey KB: Antioxidant defense in hibernation: cloning and expression of peroxiredoxins from hibernating ground squirrels. Spermophilus Tridecemlineatus Arch Biochem Biophys 2007, 461(1):59-65.
  • [34]Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S: Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 2002, 4(10):743-749.
  • [35]Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Rivera G, Valadez-Vega C, Morales-Gonzalez JA: Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011, 12(5):3117-3132.
  • [36]Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB: Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010, 49(11):1603-1616.
  • [37]Li S, Qu H, Hao J, Sun J, Guo H, Guo C, Sun B, Tu C: Proteomic analysis of primary porcine endothelial cells after infection by classical swine fever virus. Biochim Biophys Acta 2010, 1804(9):1882-1888.
  • [38]Lee JC, Chen WC, Wu SF, Tseng CK, Chiou CY, Chang FR, Hsu SH, Wu YC: Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Res 2011, 89(1):35-42.
  • [39]Lanke K, Krenn BM, Melchers WJ, Seipelt J, van Kuppeveld FJ: PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J Gen Virol 2007, 88(Pt 4):1206-1217.
  • [40]Hong HX, Zhang YM, Xu H, Su ZY, Sun P: Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells 2007, 24(3):358-363.
  文献评价指标  
  下载次数:96次 浏览次数:33次