期刊论文详细信息
Journal of Molecular Signaling
Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5
Ugo Moens1  Gianina Dumitriu1  Sergiy Kostenko1 
[1] Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
关键词: FOXO3a;    HSP27;    Senescence;    Angiogenesis;    IGB2PB;    c-MYC;    RAS;    PRAK;   
Others  :  802955
DOI  :  10.1186/1750-2187-7-9
 received in 2012-04-20, accepted in 2012-06-20,  发布年份 2012
PDF
【 摘 要 】

Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.

【 授权许可】

   
2012 Kostenko et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708032652362.pdf 1757KB PDF download
Figure 3. 57KB Image download
Figure 2. 53KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Johnson GL, Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298:1911-1912.
  • [2]Imajo M, Tsuchiya Y, Nishida E: Regulatory mechanisms and functions of MAP kinase signaling pathways. IUBMB Life 2006, 58:312-317.
  • [3]Zhang Y, Dong C: Regulatory mechanisms of mitogen-activated kinase signaling. Cell Mol Life Sci 2007, 64:2771-2789.
  • [4]Krishna M, Narang H: The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 2008, 65:3525-3544.
  • [5]Cargnello M, Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011, 75:50-83.
  • [6]Gaestel M: MAPKAP kinases - MKs - two's company, three's a crowd. Nat Rev Mol Cell Biol 2006, 7:120-130.
  • [7]Arthur JS: MSK activation and physiological roles. Front Biosci 2008, 13:5866-5879.
  • [8]Buxade M, Parra-Palau JL, Proud CG: The Mnks: MAPK kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 2008, 13:5359-5373.
  • [9]Carriere A, Ray H, Blenis J, Roux PP: The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci 2008, 13:4258-4275.
  • [10]Vermeulen L, Vanden Berghe W, Beck IM, De Bosscher K, Haegeman G: The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 2009, 34:311-318.
  • [11]Raman M, Chen W, Cobb MH: Differential regulation and properties of MAPKs. Oncogene 2007, 26:3100-3112.
  • [12]Anjum R, Blenis J: The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 2008, 9:747-758.
  • [13]Romeo Y, Zhang X, Roux PP: Regulation and function of the RSK family of protein kinases. Biochem J 2012, 441:553-569.
  • [14]Gaestel M, Kotlyarov A, Kracht M: Targeting innate immunity protein kinase signalling in inflammation. Nature Rev Drug Discov 2009, 8:480-499.
  • [15]Ronkina N, Kotlyarov A, Gaestel M: MK2 and MK3–a pair of isoenzymes? Front Biosci 2008, 13:5511-5521.
  • [16]Luig C, Köther K, Eva Dudek S, Gaestel M, Hiscott J, Wixler V, Ludwig S: MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J 2010, 24:4068-4077.
  • [17]Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E, Milarski K, Askew R, Marusic S, Lin LL, Gaestel M, Telliez JB: The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol Cell Biol 2007, 27:170-181.
  • [18]Ehlting C, Ronkina N, Böhmer O, Albrecht U, Bode KA, Lang KS, Kotlyarov A, Radzioch D, Gaestel M, Häussinger D, Bode JG: Distinct functions of the mitogen-activated protein kinase-activated protein (MAPKAP) kinases MK2 and MK3: MK2 mediates lipopolysaccharide-induced signal transducers and activators of transcription 3 (STAT3) activation by preventing negative regulatory effects of MK3. J Biol Chem 2011, 286:24113-24124.
  • [19]Perander M, Keyse SM, Seternes OM: Does MK5 reconcile classical and atypical MAP kinases? Front Biosci 2008, 13:4617-4624.
  • [20]Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, Seternes OM: Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J Biol Chem 2006, 281:35499-35510.
  • [21]Kant S, Schumacher S, Singh MK, Kispert A, Kotlyarov A, Gaestel M: Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J Biol Chem 2006, 281:35511-35519.
  • [22]Coulombe P, Rodier G, Pelletier S, Pellerin J, Meloche S: Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol Cell Biol 2003, 23:4542-4558.
  • [23]Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S: N-terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol 2004, 24:6140-6150.
  • [24]Kostenko S, Shiryaev A, Gerits N, Dumitriu G, Klenow H, Johannessen M, Moens U: Serine residue 115 of MAPK activated protein kinase MK5 is crucial for its PKA-regulated nuclear export and biological function. Cell Mol Life Sci 2011, 68:847-862.
  • [25]De la Mota-Peynado A, Chernoff J, Beeser A: Identification of the atypical Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J Biol Chem 2011, 286:13603-13611.
  • [26]Déléris P, Trost M, Topisirovic I, Tanguay PL, Borden KL, Thibault P, Meloche S: Activation loop phosphorylation of ERK3/ERK4 by group I p21-activated kinases (PAKs) defines a novel PAK-ERK3/4-MAPK-activated protein kinase signaling pathway. J Biol Chem 2011, 286:6470-6478.
  • [27]Klinger S, Turgeon B, Lévesque K, Wood GA, Aagaard-Tillery KM, Meloche S: Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality. Proc Natl Acad Sci USA 2009, 106:16710-16715.
  • [28]Rousseau J, Klinger S, Rachalski A, Turgeon B, Déléris P, Vigneault E, Poirier-Héon JF, Davoli MA, Mechawar N, El Mestikawy S, Cermakian N, Meloche S: Targeted inactivation of Mapk4 in mice reveals specific nonredundant functions of Erk3/Erk4 subfamily mitogen-activated protein kinases. Mol Cell Biol 2010, 30:5752-5763.
  • [29]Ni H, Wang XS, Diener K, Yao Z: MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem Biophys Res Commun 1998, 243:492-496.
  • [30]New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J: PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 1998, 17:3372-3384.
  • [31]Gerits N, Shiryaev A, Kostenko S, Klenow H, Shiryaeva O, Johannessen M, Moens U: The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5. Cell Mol Biol Lett 2009, 14:548-574.
  • [32]Kostenko S, Dumitriu G, Lægreid KJ, Moens U: Physiological roles of mitogen-activated-protein-kinase activated p38-regulated/activated protein kinase. World J Biol Chem 2011, 2:73-89.
  • [33]Seternes OM, Johansen B, Hegge B, Johannessen M, Keyse SM, Moens U: Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol 2002, 22:6931-6945.
  • [34]Seternes OM, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG, Morrice NA, Turgeon B, Meloche S, Moens U, Keyse SM: Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J 2004, 23:4780-4791.
  • [35]Schumacher S, Laass K, Kant S, Shi Y, Visel A, Gruber AD, Kotlyarov A, Gaestel M: Scaffolding by ERK3 regulates MK5 in development. EMBO J 2004, 23:4770-4779.
  • [36]Déléris P, Rousseau J, Coulombe P, Rodier G, Tanguay PL, Meloche S: Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5. J Cell Physiol 2008, 217:778-788.
  • [37]Shiryaev A, Moens U: Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: ménage à trois or ménage à quatre? Cell Signal 2010, 22:1185-1192.
  • [38]Zheng M, Wang YH, Wu XN, Wu SQ, Lu BJ, Dong MQ, Zhang H, Sun P, Lin SC, Guan KL, Han J: Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy depletion-induced suppression of mTORC1. Nat Cell Biol 2011, 13:263-272.
  • [39]Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U: Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 2007, 282:37232-37243.
  • [40]Shi Y, Kotlyarov A, Laabeta K, Gruber AD, Butt E, Marcus K, Meyer HE, Friedrich A, Volk HD, Gaestel M: Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Mol Cell Biol 2003, 23:7732-7741.
  • [41]Gerits N, Van Belle W, Moens U: Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity. Behav Brain Funct 2007, 3:58. BioMed Central Full Text
  • [42]Julien C, Coulombe P, Meloche S: Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J Biol Chem 2003, 278:42615-42624.
  • [43]Tanguay PL, Rodier G, Meloche S: C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis. Biochem J 2010, 428:101-111.
  • [44]Chen G, Hitomi M, Han J, Stacey W: The p38 pathway provides negative feedback for Ras proliferative signaling. J Biol Chem 2000, 275:38973-38980.
  • [45]Li Q, Zhang N, Zhang D, Wang Y, Lin T, Wang Y, Zhou H, Ye Z, Zhang F, Lin SC, Han J: Determinants that control the distinct subcellular localization of the p38α-PRAK and the p38β-PRAK complexes. J Biol Chem 2008, 283:11014-11023.
  • [46]Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M, Dong MQ, Frangou CG, Yates JR, Wright PE, Han J: PRAK is essential for ras-induced senescence and tumor suppression. Cell 2007, 128:295-308.
  • [47]Gong X, Liu A, Ming X, Wang X, Wang X, Wang D, Deng P, Jiang Y: Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts. Front Med China 2009, 3:379-383.
  • [48]Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455:1069-1075.
  • [49]Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S: Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466:869-873.
  • [50]Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, Dhir R, DiSaia P, Gabra H, Glenn P, Godwin AK, Gross J, Hartmann L, Huang M, Huntsman DG, Iacocca M, Imielinski M, Kalloger S, Karlan BY, Levine DA, Mills GB, Morrison C, Mutch D, Olvera N, Orsulic S, Park K, Petrelli N, Rabeno B, Rader JS, Sikic BI, Smith-McCune K, Sood AK, Bowtell D, Penny R, Testa JR, Chang K, Dinh HH, Drummond JA, Fowler G, Gunaratne P, Hawes AC, Kovar CL, Lewis LR, Morgan MB, Newsham IF, Santibanez J, Reid JG, Trevino LR, Wu YQ, Wang M, Muzny DM, Wheeler DA, Gibbs RA, Getz G, Lawrence MS, Cibulskis K, Sivachenko AY, Sougnez C, Voet D, Wilkinson J, Bloom T, Ardlie K, Fennell T, Baldwin J, Gabriel S, Lander ES, Ding LL, Fulton RS, Koboldt DC, McLellan MD, Wylie T, Walker J, O'Laughlin M, Dooling DJ, Fulton L, Abbott R, Dees ND, Zhang Q, Kandoth C, Wendl M, Schierding W, Shen D, Harris CC, Schmidt H, Kalicki J, Delehaunty KD, Fronick CC, Demeter R, Cook L, Wallis JW, Lin L, Magrini VJ, Hodges JS, Eldred JM, Smith SM, Pohl CS, Vandin F, Raphael BJ, Weinstock GM, Mardis ER, Wilson RK, Meyerson M, Winckler W, Getz G, Verhaak RG, Carter SL, Mermel CH, Saksena G, Nguyen H, Onofrio RC, Lawrence MS, Hubbard D, Gupta S, Crenshaw A, Ramos AH, Ardlie K, Chin L, Protopopov A, Zhang J, Kim TM, Perna I, Xiao Y, Zhang H, Ren G, Sathiamoorthy N, Park RW, Lee E, Park PJ, Kucherlapati R, Absher M, Waite L, Sherlock G, Brooks JD, Li JZ, Xu J, Myers RM, Laird PW, Cope L, Herman JG, Shen H, Weisenberger DJ, Noushmehr H, Pan F, Triche T, Berman BP, Van Den Berg DJ, Buckley J, Baylin SB, Spellman PT, Purdom E, Neuvial P, Bengtsson H, Jakkula LR, Durinck S, Han J, Dorton S, Marr H, Choi YG, Wang V, Wang NJ, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Levine A, Socci ND, Liang Y, Taylor BS, Schultz N, Borsu L, Lash AE, Brennan C, Viale A, Sander C, Ladanyi M, Hoadley KA, Meng S, Du Y, Shi Y, Li L, Turman YJ, Zang D, Helms EB, Balu S, Zhou X, Wu J, Topal MD, Hayes DN, Perou CM, Getz G, Voet D, Saksena G, Zhang J, Zhang H, Wu CJ, Shukla S, Cibulskis K, Lawrence MS, Sivachenko A, Jing R, Park RW, Liu Y, Park PJ, Noble M, Chin L, Carter H, Kim D, Karchin R, Spellman PT, Purdom E, Neuvial P, Bengtsson H, Durinck S, Han J, Korkola JE, Heiser LM, Cho RJ, Hu Z, Parvin B, Speed TP, Gray JW, Schultz N, Cerami E, Taylor BS, Olshen A, Reva B, Antipin Y, Shen R, Mankoo P, Sheridan R, Ciriello G, Chang WK, Bernanke JA, Borsu L, Levine DA, Ladanyi M, Sander C, Haussler D, Benz CC, Stuart JM, Benz SC, Sanborn JZ, Vaske CJ, Zhu J, Szeto C, Scott GK, Yau C, Hoadley KA, Du Y, Balu S, Hayes DN, Perou CM, Wilkerson MD, Zhang N, Akbani R, Baggerly KA, Yung WK, Mills GB, Weinstein JN, Penny R, Shelton T, Grimm D, Hatfield M, Morris S, Yena P, Rhodes P, Sherman M, Paulauskis J, Millis S, Kahn A, Greene JM, Sfeir R, Jensen MA, Chen J, Whitmore J, Alonso S, Jordan J, Chu A, Zhang J, Barker A, Compton C, Eley G, Ferguson M, Fielding P, Gerhard DS, Myles R, Schaefer C, Mills Shaw KR, Vaught J, Vockley JB, Good PJ, Guyer MS, Ozenberger B, Peterson J, Thomson E: Integrated genomic analysis of ovarian carcinoma. Nature 2011, 474:609-615.
  • [51]Durinck S, Ho C, Wang NJ, Liao W, Jakkula LR, Collisson EA, Pons J, Chan SW, Lam ET, Chu C, Park K, Hong SW, Hur JS, Huh N, Neuhaus IM, Yu SS, Grekin RT, Mauro TM, Cleaver JE, Kwok PY, Leboit PE, Getz G, Cibulskis K, Aster JC, Huang H, Purdom E, Li J, Bolund L, Arron ST, Gray JW, Spellman PT, Cho RJ: Temporal dissection of tumorigenesis in primary cancers. Cancer Discov 2011, 1:137-143.
  • [52]Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortés ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareño C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR: The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333:1157-1160.
  • [53]Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, Davis S, Comparative Sequencing Program NISC, Stemke-Hale K, Davies MA, Gershenwald JE, Robinson W, Robinson S, Rosenberg SA, Samuels Y: Exome sequencing identifies GRI2A as frequently mutated in melanoma. Nat Genet 2011, 43:442-446.
  • [54]Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E, Gosh P, Zhang H, Zeid R, Ren X, Cibulskis K, Sivachenko AY, Wagle N, Sucker A, Sougnez C, Onofrio R, Ambrogio L, Auclair D, Fennell T, Carter SL, Drier Y, Stojanov P, Singer MA, Voet D, Jing R, Saksena G, Barretina J, Ramos AH, Pugh TJ, Stransky N, Parkin M, Winckler W, Mahan S, Ardlie K, Baldwin J, Argo J, Schadendorf D, Meyerson M, Gabriel SB, Golub TR, Wagner SN, Lander ES, Getz G, Chin L, Garraway LA: Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012, 485:502-506.
  • [55]Aberg E, Torgersen KM, Johansen B, Keyse SM, Seternes OM: Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif. J Biol Chem 2009, 284:19392-19401.
  • [56]Merkerova M, Bruchova H, Brdicka R: Expression analysis of PCNA gene in chronic myelogenous leukemia – combined application of siRNA silencing and expression arrays. Leukemia Res 2007, 31:661-672.
  • [57]Rai R, Mahale A, Saranath D: Molecular cloning, isolation and characterization of ERK3 gene from chewing-tobacco induced oral squamous cell carcinoma. Oral Oncol 2004, 40:705-712.
  • [58]Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949-954.
  • [59]Wellbrock C, Karasarides M, Marais R: The Raf proteins take centre stage. Nat Rev Mol Cell Biol 2004, 5:875-885.
  • [60]Hoeflich KP, Eby MT, Forrest WF, Gray DC, Tien JY, Stern HM, Murray LJ, Davis DP, Modrusan Z, Seghagiri S: Regulation of ERK3/MAPK6 expression by BRAF. Int J Oncol 2006, 29:839-849.
  • [61]Wang Q, Ding Q, Dong Z, Ehlers RA, Evers BM: Downregulation of mitogen-activated protein kinases in human colon cancers. Anticancer Res 2000, 20:75-83.
  • [62]Liang B, Wang S, Zhu XG, Yu YX, Ciu ZR, Yu YZ: Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer. World J Gastroenterol 2005, 11:623-628.
  • [63]Makitie AA, Reis PP, Arora S, Macmillan C, Warner GC, Sukhai M, Dardick I, Perez-Ordonez B, Wells R, Brown D, Gilbert R, Freeman J, Gullane P, Irish J, Kamel-Reid S: Molecular characterization of salivary gland malignancy using Smgb-Tag transgenic mouse model. Lab Invest 2005, 85:947-961.
  • [64]Evtimova V, Schwirzke M, Tarbé N, Burtscher H, Jarsch M, Kaul S, Weidle UH: Identification of breast cancer metastasis-associated genes by chip technology. Anticancer Res 2001, 21:3799-3806.
  • [65]Nambiar S, Mirmohammadsadegh A, Doroudi R, Gustrau A, Marini A, Roeder G, Ruzicka T, Hengge UR: Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch Dermatol 2005, 141:165-173.
  • [66]Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, Solis LM, Wistuba II, Qin J, Tsai SY, Tsai MJ, O’Malley BW: ERK3 signals through STC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest 2012. pii: 61492 122:1869.1880.
  • [67]Lee S, Kang J, Cho M, Seo E, Choi H, Kim E, Kim J, Kim H, Kang GY, Kim KP, Park YH, Yu DY, Yum YN, Park SN, Yoon DY: Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches. Int J Oncol 2009, 34:161-172.
  • [68]Hansen CA, Bartek J, Jensen S: A functional link between the human cell cycle-regulatory phosphatase Cdc14A and the atypical mitogen-activated kinase Erk3. Cell Cycle 2008, 7:1-10.
  • [69]Stöhr N, Köhn M, Lederer M, Glass M, Reinke C, Singer RH, Hüttelmaier S: IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev 2012, 26:176-189.
  • [70]Yisraeli JK: VICKZ proteins: a multi-talented family of regulatory RNA-binding protein. Biol Cell 2005, 97:87-96.
  • [71]Mili S, Macara IG: RNA localization and polarity: from A(PC) to Z(BP). Trends Cell Biol 2009, 19:156-164.
  • [72]Vikensaa J, Hansen TV, Jonson L, Borup R, Wewer UM, Christiansen J, Nielsen FC: RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J 2006, 25:1456-1468.
  • [73]Oberman F, Rand K, Maizels Y, Rubinstein AM, Yisraeli JK: VICKZ proteins mediate cell migration via their RNA binding activity. RNA 2007, 13:1558-1569.
  • [74]Vainer G, Vainer-Mosse E, Pikarsky A, Shenoy SM, Obermand F, Yeffet A, Singer RH, Pikarsky E, Yisraeli JK: A role for VICKZ proteins in the progression of colorectal carcinomas: regulating lamellipodia formation. J Pathol 2008, 215:445-456.
  • [75]Kostenko S, Moens U: Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009, 66:3289-3307.
  • [76]Das M, Jiang F, SLuss HK, Zhang C, Shokat KM, Flavell RA, Davis RJ: Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc Natl Acad Sci USA 2007, 104:15759-15764.
  • [77]Wagner EF, Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009, 9:537-549.
  • [78]Yoshizuka N, Chen RM, Xu Z, Liao R, Hong L, Hi WY, Yu G, Han J, Chen L, Sun P: A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. Mol Cell Biol 2012, 32:606-618.
  • [79]Rousseau S, Houle F, Landry J, Huot J: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997, 15:2169-2177.
  • [80]Shiryaev A, Dumitriu G, Moens U: Distinct roles of MK2 and MK5 in cAMP/PKA- and stress/p38MAPK-induced heat shock protein 27 phosphorylation. J Mol Signal 2011, 6:4. BioMed Central Full Text
  • [81]Zhao X, Guan JL: Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 2011, 63:610-615.
  • [82]Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P, Burgering BM, Bushell M, Rosenwald A, Eilers M: The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell 2011, 41:445-457.
  • [83]Meyer N, Penn LZ: Reflecting on 25 years with MYC. Nat Rev Cancer 2008, 8:976-990.
  • [84]Karadedou CT, Gomes AR, Chen J, Petkovic M, Ho KK, Zwolinska AK, Feltes A, Wong SY, Chan KYK, Cheung YN, Tsang JWH, Brosens JJ, Khoo US, Lam EWF: FOXO3a represses VEGF expression through FOXM1-dependent and –independent mechanisms in breast cancer. Oncogene 2012, 31:1845-1858.
  • [85]Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, Zhang S, Ray A, Perera RJ: Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One 2011, 6:e24922.
  • [86]Dong F, Lou D: MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets. Mol Vision 2012, 18:537-546.
  • [87]Prior IA, Lewis PD, Mattos C: A comprehensive survey of Ras mutations in cancer. Cancer Res 2012, 72:2457-2467.
  • [88]Albihn A, Johnsen JI, Henriksson MA: Myc in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010, 107:163-224.
  • [89]Yang JY, Ha SA, Yang YS, Kim JW: p-Glycoprotein ABCB5 and YB-1 expression plays a role in decreased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer 2010, 10:388. BioMed Central Full Text
  • [90]Kostenko S, Khan MT, Sylte I, Moens U: The diterpenoid alkaloid noroxoaconite is a Mapkap kinase 5 (MK5/PRAK) inhibitor. Cell Mol Life Sci 2011, 68:289-301.
  • [91]Anwar A, Hosoya T, Leong KM, Onogi H, Okuna Y, Hiramutsu T, Koyama H, Suzuki M, Hagiwara M, Garcia-Blanco MA: The kinase inhibitor SFV785 dislocates Dengue virus envelope protein from the replication complex and blocks virus assembly. PLoS One 2011, 8:e23246.
  • [92]Andrew MJ, Clase JA, Bar G, Tricarico G, Edwards PJ, Brys R, Chambers M, Schmidt W, MacLeod A, Hirst K, Allen V, Birault V, Le J, Harris J, Self A, Nash K, Dixon G: Discovery of a series of imidazopyrazine small molecule inhibitors of the kinase MAPKAPK5, that show activity using in vitro and in vivo models of rheumatoid arthritis. Bioorg Med Chem Lett 2012, 22:2266-2270.
  文献评价指标  
  下载次数:32次 浏览次数:5次