期刊论文详细信息
Journal of Neuroinflammation
Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury
Jingxian Yang2  Zhong You1  Zhenyu Tao2  Jie Song2  Yanan Jiao2  Yingjia Yao2  Liang Kong2  Yang Xia1 
[1] Department of Engineering, University of Oxford, Oxford OX1 3LZ, UK;School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
关键词: Anti-apoptosis;    Anti-inflammation;    Secondary brain injury;    Cortical stab wound injury;    Osthole;   
Others  :  1227072
DOI  :  10.1186/s12974-015-0373-x
 received in 2015-05-05, accepted in 2015-08-16,  发布年份 2015
PDF
【 摘 要 】

Background

Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury.

Methods

A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3–21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays.

Results

Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival.

Conclusions

Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.

【 授权许可】

   
2015 Xia et al.

【 预 览 】
附件列表
Files Size Format View
20150927092157389.pdf 2230KB PDF download
Fig. 6. 36KB Image download
Fig. 5. 134KB Image download
Fig. 4. 237KB Image download
Fig. 3. 47KB Image download
Fig. 2. 28KB Image download
Fig. 1. 16KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Kelly PJ, Goerss SJ, Kall BA: The stereotaxic retractor in computer-assisted stereotaxic microsurgery. Technical note. J Neurosurg 1988, 69(2):301-6.
  • [2]Nishihara T, Teraoka A, Morita A, Ueki K, Takai K, Kirino T: A transparent sheath for endoscopic surgery and its application in surgical evacuation of spontaneous intracerebral hematomas. Technical note. J Neurosurg 2000, 92(6):1053-5.
  • [3]Kassam AB, Engh JA, Mintz AH, Prevedello DM: Completely endoscopic resection of intraparenchymal brain tumors. J Neurosurg 2009, 110(1):116-23.
  • [4]Waran V, Vairavan N, Sia SF, Abdullah B: A new expandable cannula system for endoscopic evacuation of intraparenchymal hemorrhages. J Neurosurg 2009, 111(6):1127-30.
  • [5]Ding D, Starke RM, Webster Crowley R, Liu KC. Endoport-assisted microsurgical resection of cerebral cavernous malformations. J Clin Neurosci. 2015; S0967-5868(15)00018-1. doi: 10.1016/j.jocn.2015.01.004. [Epub ahead of print].
  • [6]Polikov VS, Tresco PA, Reichert WM: Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 2005, 148(1):1-18.
  • [7]Wagshul ME, Eide PK, Madsen JR: The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011, 8(1):5. BioMed Central Full Text
  • [8]Wallenquist U, Holmqvist K, Hånell A, Marklund N, Hillered L, Forsberg-Nilsson K: Ibuprofen attenuates the inflammatory response and allows formation of migratory neuroblasts from grafted stem cells after traumatic brain injury. Restor Neurol Neurosci 2012, 30(1):9-19.
  • [9]Bayir H, Kochanek PM, Clark RS: Traumatic brain injury in infants and children: mechanisms of secondary damage and treatment in the intensive care unit. Crit Care Clin 2003, 19(3):529-49.
  • [10]Villapol S, Byrnes KR, Symes AJ: Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte–vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 2014, 5:82.
  • [11]Xia L, Jiang ZL, Wang GH, Hu BY, Ke KF: Treatment with ginseng total saponins reduces the secondary brain injury in rat after cortical impact. J Neurosci Res 2012, 90(7):1424-36.
  • [12]Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, et al.: Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013, 10(1):106. BioMed Central Full Text
  • [13]Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ: The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011, 31(2):658-70.
  • [14]Ziebell JM, Morganti-Kossmann MC: Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010, 7(1):22-30.
  • [15]Rhodes J: Peripheral immune cells in the pathology of traumatic brain injury? Curr Opin Crit Care 2011, 17(2):122-30.
  • [16]Lucas SM, Rothwell NJ, Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol 2006, 147(Suppl 1):S232-40.
  • [17]Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KL, Hutchinson PJ: Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011, 95(3):352-72.
  • [18]D’Avila JC, Lam TI, Bingham D, Shi J, Won SJ, Kauppinen TM, et al.: Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J Neuroinflammation 2012, 9:31. BioMed Central Full Text
  • [19]Su Z, Yuan Y, Cao L, Zhu Y, Gao L, Qiu Y, et al.: Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia 2010, 58:901-15.
  • [20]Gao Z, Wen Q, Xia Y, Yang J, Gao P, Zhang N, et al.: Osthole augments therapeutic efficiency of neural stem cells-based therapy in experimental autoimmune encephalomyelitis. J Pharmacol Sci 2014, 124(1):54-65.
  • [21]Hu Y, Wen Q, Liang W, Kang T, Ren L, Zhang N, et al.: Osthole reverses beta-amyloid peptide cytotoxicity on neural cells by enhancing cyclic AMP response element-binding protein phosphorylation. Biol Pharm Bull 2013, 36(12):1950-8.
  • [22]Chen T, Liu W, Chao X, Qu Y, Zhang L, Luo P, et al.: Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement ofmitogen-activated protein kinase pathway. Neuroscience 2011, 183:203-11.
  • [23]Ji HJ, Hu JF, Wang YH, Chen XY, Zhou R, Chen NH: Osthole improves chronic cerebral hypoperfusion induced cognitive deficits and neuronal damage in hippocampus. Eur J Pharmacol 2010, 636(1–3):96-101.
  • [24]Chao X, Zhou J, Chen T, Liu W, Dong W, Qu Y, et al.: Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats. Brain Res 2010, 1363:206-11.
  • [25]Okamoto T, Yoshida S, Kobayashi T, Okabe S: Inhibition of concanavalin A-induced mice hepatitis by coumarin derivatives. Jpn J Pharmacol 2001, 85(1):95-7.
  • [26]Yang LL, Wang MC, Chen LG, Wang CC: Cytotoxic activity of coumarins from the fruits of Cnidium monnieri on leukemia cell lines. Planta Med 2003, 69(12):1091-5.
  • [27]You L, Feng S, An R, Wang X: Osthole: a promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat Prod Commun 2009, 4(2):297-302.
  • [28]Chen X, Pi R, Zou Y, Liu M, Ma X, Jiang Y, et al.: Attenuation of experimental autoimmune encephalomyelitis in C57 BL/6 mice by osthole, a natural coumarin. Eur J Pharmacol 2010, 629(1–3):40-6.
  • [29]Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, et al.: Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 2014, 11:66. BioMed Central Full Text
  • [30]Wang Y, Moges H, Bharucha Y, Symes A: Smad3 null mice display more rapid woun closure and reduced scar formation after a stab wound to the cerebralcortex. Exp Neurol 2007, 203(1):168-84.
  • [31]Takarada-Iemata M, Kezuka D, Takeichi T, Ikawa M, Hattori T, Kitao Y, et al.: Deletion of N-myc downstream-regulated gene 2 attenuates reactive astrogliosis and inflammatory response in a mouse model of cortical stab injury. J Neurochem 2014, 130(3):374-87.
  • [32]Casanova F, Carney PR, Sarntinoranont M: In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain. J Neurosci Methods 2014, 237:79-89.
  • [33]Villapol S, Wang Y, Adams M, Symes AJ: Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013, 250:353-65.
  • [34]Hirjak D, Wolf RC, Stieltjes B, Hauser T, Seidl U, Thiemann U, et al.: Neurological soft signs and brainstem morphology in first-episode schizophrenia. Neuropsychobiology 2013, 68(2):91-9.
  • [35]Lu M, Chen J, Lu D, Yi L, Mahmood A, Chopp M: Global test statistics for treatment effect of stroke and traumatic brain injury in rats with administration of bone marrow stromal cells. J Neurosci Methods 2003, 128(1–2):183-90.
  • [36]Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al.: Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 2008, 131(Pt 3):616-29.
  • [37]Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A: Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma 2010, 27(1):229-39.
  • [38]Bitto A, Polito F, Irrera N, Calò M, Spaccapelo L, Marini HR, et al.: Protective effects of melanocortins on short-term changes in a rat model of traumatic brain injury. Crit Care Med 2012, 40(3):945-51.
  • [39]Yin F, Guo L, Meng CY, Liu YJ, Lu RF, Li P, et al.: Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury. Brain Res 2014, 1561:1-10.
  • [40]Hozumi I, Chiu FC, Norton WT: Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res 1990, 524(1):64-71.
  • [41]Yang J, Yan Y, Xia Y, Kang T, Li X, Ciric B, et al.: Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells. Mol Ther 2014, 22(2):440-50.
  • [42]Zhang N, Wen Q, Ren L, Liang W, Xia Y, Zhang X, et al.: Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells. Int J Mol Sci 2013, 14(9):18657-69.
  • [43]Zhang N, Kang T, Xia Y, Wen Q, Zhang X, Li H, et al.: Effects of salvianolic acid B on survival, self-renewal and neuronal differentiation of bone marrow derived neural stem cells. Eur J Pharmacol 2012, 697(1–3):32-9.
  • [44]Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al.: Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 2009, 119:3678-91.
  • [45]Yang J, Yan Y, Ciric B, Yu S, Guan Y, Xu H, et al.: Evaluation of bone marrow- and brain-derived neural stem cells in therapy of central nervous system autoimmunity. Am J Pathol 2010, 177:1989-2001.
  • [46]Yang J, Bridges K, Chen KY, Liu AY: Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 2008., 3(8) Article ID e2864
  • [47]Cole JT, Yarnel A, Kean WS, Gold E, Lewis B, Ren M, et al.: Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 2011, 28(3):359-69.
  • [48]Susarla BT, Villapol S, Yi JH, Geller HM, Symes AJ: Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice. ASN Neuro 2014, 6(3):159-70.
  • [49]Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ: The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 1997, 226(1):33-6.
  • [50]Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, et al.: Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2009, 30(3):385-96.
  • [51]Lau LT, Yu AC: Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma 2001, 18(3):351-9.
  • [52]Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, et al.: Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 2012, 349(1):169-80.
  • [53]Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, et al.: The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129(Pt 12):3249-69.
  • [54]Yiu G, He Z: Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006, 7(8):617-27.
  • [55]Chen Z, Mao X, Liu A, Gao X, Chen X, Ye M, et al.: Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway. Neurochem Res 2015, 40(1):186-94.
  • [56]Schaible EV, Steinsträßer A, Jahn-Eimermacher A, Luh C, Sebastiani A, Kornes F, et al.: Single administration of tripeptide α-MSH(11–13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS One 2013., 8(8) Article ID e71056
  • [57]Springer JE: Apoptotic cell death following traumatic injury to the central nervous system. J Biochem Mol Biol 2002, 35(1):94-105.
  • [58]Stoica BA, Faden AI: Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 2010, 7(1):3-12.
  • [59]Casanova F, Carney PR, Sarntinoranont M: Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain. PLoS One 2014., 9(4) Article ID e94919
  • [60]Bjornsson CS, Oh SJ, Al-Loafahi YA, Lim YJ, Smith KL: Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J Neural Eng 2006, 3(3):196-207.
  • [61]Perrot R, Berges R, Bocquet A, Eyer J: Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 2008, 38(1):27-65.
  • [62]Yabe JT, Wang FS, Chylinski T, Katchmar T, Shea TB: Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Cell Motil Cytoskeleton 2001, 50(1):1-12.
  • [63]Wang H, Wang K, Zhong X, Dai Y, Qiu W, Wu A, et al.: Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation 2012, 19(5):304-8.
  • [64]Farkas G, Márton J, Nagy Z, Mándi Y, Takács T, Deli MA, et al.: Experimental acute pancreatitis results in increased blood-brain barrier permeability in the rat: a potential role for tumor necrosis factor and interleukin 6. Neurosci Lett 1998, 242(3):147-50.
  • [65]Xie F, Fang C, Schnittke N, Schwob JE, Ding X: Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6. Toxicol Appl Pharmacol 2013, 272(3):598-607.
  • [66]Kotipatruni RR, Dasari VR, Veeravalli KK, Dinh DH, Fassett D, Rao JS: p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem Res 2011, 36(11):2063-74.
  • [67]Youle RJ, Strasser A: The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008, 9(1):47-59.
  • [68]Fan J, Xu G, Nagel DJ, Hua Z, Zhang N, Yin G: A model of ischemia and reperfusion increases JNK activity, inhibits the association of BAD and 14-3-3, and induces apoptosis of rabbit spinal neurocytes. Neurosci Lett 2010, 473(3):196-201.
  • [69]Allsopp TE, Wyatt S, Paterson HF, Davies AM: The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993, 73(2):295-307.
  • [70]Gross A, Jockel J, Wei MC, Korsmeyer SJ: Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998, 17(14):3878-85.
  • [71]Adams JM, Cory S: The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281(5381):1322-6.
  • [72]Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic proteasecascade. Cell. 1997;91(4):479–89.
  文献评价指标  
  下载次数:7次 浏览次数:6次