期刊论文详细信息
Cancer Cell International
Validation of the effects of TGF-β1 on tumor recurrence and prognosis through tumor retrieval and cell mechanical properties
Ming-Long Yeh1  Chun-Wen Hu1  Ming-Jer Tang2  Pei-Hung Chiu1  Yu-Wei Chou1  Tsung-Hsien Wu1 
[1] Institute of Biomedical Engineering, National Cheng Kung University, No.1 University Road, Tainan City 701, Taiwan;Institute of Physiology, National Cheng Kung University, Tainan, Taiwan
关键词: Cancer-metastasis;    Tumor-recurrence;    Angiogenesis;    EMT;    TGF-β1;    Cell mechanical properties;   
Others  :  792272
DOI  :  10.1186/1475-2867-14-20
 received in 2013-07-15, accepted in 2014-02-20,  发布年份 2014
PDF
【 摘 要 】

Background

In vivo, the transforming growth factor-beta1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) occurs in seconds during cancer cells intravasation and extravasation. Although it has been established that cellular stiffness can change as a cancer cell transformed, the precise relationship between TGF-β1-induced mesenchymal stem cell mechanics and cancer prognosis remains unclear. Accordingly, it is hard to define the effects of EMT on cell mechanical properties (CMs), tumor recurrence and metastasis risks. This study bridges physical and pathological disciplines to reconcile single-cell mechanical measurements of tumor cells.

Methods and results

We developed a microplate measurement system (MMS) and revealed the intrinsic divergent tumor composition of retrieval cells by cell stiffness and adhesion force and flow cytometry analysis. After flow cytometry sorting, we could measure the differences in CMs of the Sca-1+-CD44+ (mesenchymal-stem-cell-type) and the other subgroups. As well as the stiffer and heterogeneous compositions among tumor tissues with higher recurrence risk were depicted by MMS and atomic force microscopy (AFM). An in vitro experiment validated that Lewis lung carcinoma (LLC) cells acquired higher CMs and motility after EMT, but abrogated by SB-505124 inhibition. Concomitantly, the CD31, MMP13 and TGF-β1 enriched micro-environment in the tumor was associated with higher recurrence and distal lung metastasis risks. Furthermore, we report a comprehensive effort to correlate CMs to tumor-prognosis indicators, in which a decreased body weight gain ratio (BWG) and increased tumor weight (TW) were correlated with increased CMs.

Conclusions

Together, we determined that TGF-β1 was significantly associated with malignant tumor progressing. In terms of clinical applications, local tumor excision followed by MMS analysis offers an opportunity to predict tumor recurrence and metastasis risks.

【 授权许可】

   
2014 Wu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705025601298.pdf 2026KB PDF download
Figure 8. 100KB Image download
Figure 7. 71KB Image download
Figure 6. 53KB Image download
Figure 5. 35KB Image download
Figure 4. 68KB Image download
Figure 3. 55KB Image download
Figure 2. 58KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62(1):10-29.
  • [2]Buergy D, Wenz F, Groden C, Brockmann MA: Tumor-platelet interaction in solid tumors. Int J Cancer 2012, 130(12):2747-2760.
  • [3]Labelle M, Begum S, Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011, 20(5):576-590.
  • [4]Miettinen PJ, Ebner R, Lopez AR, Derynck R: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994, 127(6 Pt 2):2021-2036.
  • [5]Zavadil J, Bottinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005, 24(37):5764-5774.
  • [6]Beach JR, Hussey GS, Miller TE, Chaudhury A, Patel P, Monslow J, Zheng Q, Keri RA, Reizes O, Bresnick AR, Howe PH, Egelhoff TT: Myosin II isoform switching mediates invasiveness after TGF-beta-induced epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2011, 108(44):17991-17996.
  • [7]Mori M, Nakagami H, Koibuchi N, Miura K, Takami Y, Koriyama H, Hayashi H, Sabe H, Mochizuki N, Morishita R, Kaneda Y: Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell 2009, 20(13):3115-3124.
  • [8]Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL: TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 2013, 123(3):1348-1358.
  • [9]DaCosta Byfield S, Major C, Laping NJ, Roberts AB: SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004, 65(3):744-752.
  • [10]Thoelking G, Reiss B, Wegener J, Oberleithner H, Pavenstaedt H, Riethmuller C: Nanotopography follows force in TGF-beta1 stimulated epithelium. Nanotechnology 2010, 21(26):265102.
  • [11]Suresh S: Nanomedicine: elastic clues in cancer detection. Nat Nanotechnol 2007, 2(12):748-749.
  • [12]Cross SE, Jin YS, Rao J, Gimzewski JK: Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2007, 2(12):780-783.
  • [13]Darling EM, Zauscher S, Block JA, Guilak F: A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 2007, 92(5):1784-1791.
  • [14]Suresh S: Biomechanics and biophysics of cancer cells. Acta Biomater 2007, 3(4):413-438.
  • [15]Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 2012, 7(10):e46609.
  • [16]Hu M, Wang J, Zhao H, Dong S, Cai J: Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 2009, 42(10):1513-1519.
  • [17]Lam WA, Rosenbluth MJ, Fletcher DA: Chemotherapy exposure increases leukemia cell stiffness. Blood 2007, 109(8):3505-3508.
  • [18]Lam WA, Rosenbluth MJ, Fletcher DA: Increased leukaemia cell stiffness is associated with symptoms of leucostasis in paediatric acute lymphoblastic leukaemia. Br J Haematol 2008, 142(3):497-501.
  • [19]Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R: Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 2011, 71(15):5075-5080.
  • [20]Bhadriraju K, Hansen LK: Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 2002, 278(1):92-100.
  • [21]Discher DE, Janmey P, Wang YL: Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310(5751):1139-1143.
  • [22]Garcia-Aguilar J, Mellgren A, Sirivongs P, Buie D, Madoff RD, Rothenberger DA: Local excision of rectal cancer without adjuvant therapy: a word of caution. Ann Surg 2000, 231(3):345-351.
  • [23]Lock MR, Ritchie JK, Hawley PR: Reappraisal of radical local excision for carcinoma of the rectum. Br J Surg 1993, 80(7):928-929.
  • [24]Killingback M: Local excision of carcinoma of the rectum: indications. World J Surg 1992, 16(3):437-446.
  • [25]Inoue K, Yamamoto R, Nishiyama N, Hori T, Miyamoto Y, Takehara S, Kaji M, Kin T, Katoh T, Iwata T, Nishida T, Kinoshita H: Examination of prognostic factors after resection of pulmonary metastasis of osteosarcoma by multivariate analysis. Osaka City Med J 1998, 44(1):35-42.
  • [26]Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, Seymour SL, Argast GM, Epstein DM, Haley JD: A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis 2011, 28(2):137-155.
  • [27]Raiser DM, Kim CF: Commentary: Sca-1 and Cells of the Lung: a matter of Different Sorts. Stem Cells 2009, 27(3):606-611.
  • [28]Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K: Molecular definition of breast tumor heterogeneity. Cancer Cell 2007, 11(3):259-273.
  • [29]Batts TD, Machado HL, Zhang Y, Creighton CJ, Li Y, Rosen JM: Stem cell antigen-1 (sca-1) regulates mammary tumor development and cell migration. PLoS One 2011, 6(11):e27841.
  • [30]Jaggupilli A, Elkord E: Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012, 2012:708036.
  • [31]Rosenbluth MJ, Lam WA, Fletcher DA: Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 2006, 90(8):2994-3003.
  • [32]Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ: Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 1999, 28(4):312-316.
  • [33]Ward KA, Li WI, Zimmer S, Davis T: Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology 1991, 28(3–4):301-313.
  • [34]Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 2005, 88(5):3689-3698.
  • [35]Buckley ST, Medina C, Davies AM, Ehrhardt C: Cytoskeletal re-arrangement in TGF-beta1-induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis. Nanomedicine 2012, 8(3):355-364.
  • [36]Rosel D, Brabek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, Bicanova K, Kollmannsberger P, Pankova D, Vesely P, Folk P, Fabry B: Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res 2008, 6(9):1410-1420.
  • [37]Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008, 68(4):989-997.
  • [38]Basu S, Campbell HM, Dittel BN, Ray A: Purification of specific cell population by fluorescence activated cell sorting (FACS). J Vis Exp 2010, 1546(41):1-4.
  • [39]Dardik R, Kaufmann Y, Savion N, Rosenberg N, Shenkman B, Varon D: Platelets mediate tumor cell adhesion to the subendothelium under flow conditions: involvement of platelet GPIIb-IIIa and tumor cell alpha(v) integrins. Int J Cancer 1997, 70(2):201-207.
  • [40]Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 2001, 34(12):1545-1553.
  • [41]LaGamba D, Nawshad A, Hay ED: Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn 2005, 234(1):132-142.
  • [42]Kass L, Erler JT, Dembo M, Weaver VM: Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 2007, 39(11):1987-1994.
  • [43]Butcher DT, Alliston T, Weaver VM: A tense situation: forcing tumour progression. Nat Rev Cancer 2009, 9(2):108-122.
  • [44]Cox TR, Erler JT: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011, 4(2):165-178.
  • [45]Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM: Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8(3):241-254.
  • [46]Zhong C, Kinch MS, Burridge K: Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell 1997, 8(11):2329-2344.
  • [47]Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, Kessler O, Cohen T, Resnick M, Neeman M, Neufeld G: Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 2003, 63(7):1657-1666.
  • [48]Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004, 166(6):877-887.
  • [49]Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A: Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. Cancer Treat Res 2014, 159:401-426.
  • [50]Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M, Meyer-Schaller N, Cornille K, Hopfer U, Bentires-Alj M, Christofori G: VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 2014. in press
  • [51]Mierke CT: Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem 2011, 286(46):40025-40037.
  • [52]Lafleur MA, Drew AF, dse Sousa EL, Blick T, Bills M, Walker EC, Williams ED, Waltham M, Thompson EW: Upregulation of matrix metalloproteinases (MMPs) in breast cancer xenografts: a major induction of stromal MMP-13. Int J Cancer 2005, 114(4):544-554.
  • [53]Zigrino P, Kuhn I, Bauerle T, Zamek J, Fox JW, Neumann S, Licht A, Schorpp-Kistner M, Angel P, Mauch C: Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol 2009, 129(11):2686-2693.
  • [54]Bremnes RM, Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, Camps C, Marinez I, Busund LT: The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011, 6(1):209-217.
  • [55]Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006, 6(7):506-520.
  • [56]Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 2008, 68(6):1809-1819.
  • [57]Kessenbrock K, Plaks V, Werb Z: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 14(1):52-67.
  • [58]Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW Jr, Chatterjee SK: Tumor metastasis in an orthotopic murine model of head and neck cancer: possible role of TGF-beta 1 secreted by the tumor cells. J Cell Biochem 2006, 97(5):1036-1051.
  • [59]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4):704-715.
  • [60]Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM: Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002, 109(12):1607-1615.
  • [61]Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M, Wang XJ: Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res 2004, 64(13):4405-4410.
  • [62]Halder SK, Beauchamp RD, Datta PK: A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 2005, 7(5):509-521.
  • [63]Theveneau E, Mayor R: Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 2012, 24(5):677-684.
  • [64]Birchmeier W: Cell adhesion and signal transduction in cancer. Conference on cadherins, catenins and cancer. EMBO Rep 2005, 6(5):413-417.
  • [65]Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R: Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008, 456(7224):957-961.
  • [66]Alshaker HA, Matalka KZ: IFN-gamma, IL-17 and TGF-beta involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 2011, 11:33. BioMed Central Full Text
  • [67]van Themsche C, Mathieu I, Parent S, Asselin E: Transforming growth factor-beta3 increases the invasiveness of endometrial carcinoma cells through phosphatidylinositol 3-kinase-dependent up-regulation of X-linked inhibitor of apoptosis and protein kinase c-dependent induction of matrix metalloproteinase-9. J Biol Chem 2007, 282(7):4794-4802.
  • [68]Walker L, Millena AC, Strong N, Khan SA: Expression of TGFbeta3 and its effects on migratory and invasive behavior of prostate cancer cells: involvement of PI3-kinase/AKT signaling pathway. Clin Exp Metastasis 2012, 30(1):13-23.
  • [69]Colbert MJ, Raegen AN, Fradin C, Dalnoki-Veress K: Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique. Eur Phys J E Soft Matter 2009, 30(2):117-121.
  • [70]Miyazaki H, Hasegawa Y, Hayashi K: A newly designed tensile tester for cells and its application to fibroblasts. J Biomech 2000, 33(1):97-104.
  • [71]Chu YS, Thomas WA, Eder O, Pincet F, Perez E, Thiery JP, Dufour S: Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J Cell Biol 2004, 167(6):1183-1194.
  • [72]Friedrichs J, Helenius J, Muller DJ: Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk. Proteomics 2010, 10(7):1455-1462.
  • [73]Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA: Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 2011, 469(7329):226-230.
  • [74]Shen Y, Nakajima M, Kojima S, Homma M, Fukuda T: Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker. Biochem Biophys Res Commun 2011, 409(2):160-165.
  • [75]Itabashi T, Takagi J, Shimamoto Y, Onoe H, Kuwana K, Shimoyama I, Gaetz J, Kapoor TM, Ishiwata S: Probing the mechanical architecture of the vertebrate meiotic spindle. Nat Methods 2009, 6(2):167-172.
  • [76]Matsui TS, Deguchi S, Sakamoto N, Ohashi T, Sato M: A versatile micro-mechanical tester for actin stress fibers isolated from cells. Biorheology 2009, 46(5):401-415.
  • [77]Standiford TJ, Kuick R, Bhan U, Chen J, Newstead M, Keshamouni VG: TGF-beta-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 2011, 30(21):2475-2484.
  • [78]Saito RA, Watabe T, Horiguchi K, Kohyama T, Saitoh M, Nagase T, Miyazono K: Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res 2009, 69(7):2783-2791.
  • [79]Dong QG, Bernasconi S, Lostaglio S, de Calmanovici RW, Martin-Padura I, Breviario F, Garlanda C, Ramponi S, Mantovani A, Vecchi A: A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler Thromb Vasc Biol 1997, 17(8):1599-1604.
  • [80]Katz E, Skorecki K, Tzukerman M: Niche-dependent tumorigenic capacity of malignant ovarian ascites-derived cancer cell subpopulations. Clin Cancer Res 2009, 15(1):70-80.
  • [81]Wu CC, Su HW, Lee CC, Tang MJ, Su FC: Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. Biochem Biophys Res Commun 2005, 329(1):256-265.
  • [82]Lopez JI, Kang I, You WK, McDonald DM, Weaver VM: In situ force mapping of mammary gland transformation. Integr Biol (Camb) 2011, 3(9):910-921.
  • [83]Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH, Teurich S, Schorpp-Kistner M, Werb Z, Angel P: Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol 2006, 126(2):486-496.
  • [84]Weidner N: Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995, 36(2):169-180.
  • [85]Lee MJ, Kim J, Lee KI, Shin JM, Chae JI, Chung HM: Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy 2011, 13(2):165-178.
  • [86]Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987, 47(12):3239-3245.
  • [87]Euhus DM, Hudd C, LaRegina MC, Johnson FE: Tumor measurement in the nude mouse. J Surg Oncol 1986, 31(4):229-234.
  • [88]Colton T: Statistics in Medicine. Boston, Mass: Little, Brown and Co; 1974.
  文献评价指标  
  下载次数:4次 浏览次数:9次