期刊论文详细信息
Journal of Ovarian Research
Females transplanted with ovaries subjected to hypoxic preconditioning show impair of ovarian function
Edmund Chada Baracat4  José Eduardo Krieger1  Edna Frasson de Souza Montero3  Ricardo dos Santos Simões4  Gustavo Arantes Rosa Maciel4  José Maria Soares-Jr4  Juliana Sanajotti Nakamuta1  Luciana Lamarão Damous2 
[1] Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil;Galvão Bueno St, 499. Bloco A. Apto31. Liberdade, São Paulo 01506-000, SP, Brazil;Department of Surgery, Laboratory of Surgical Physiopathology (LIM-62), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil;Gynecology Division, Department of Obstetrics and Gynecology, Laboratory of Structural and Molecular Gynecology (LIM-58), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
关键词: Rat;    Ovary;    Apoptosis;    Hypoxic preconditioning;    Ovarian transplantation;   
Others  :  801738
DOI  :  10.1186/1757-2215-7-34
 received in 2014-01-20, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

Cryopreservation of the ovarian tissue has shown promising results. However, there remain controversial issues such as the short half-life of grafts. In this aspect, there are some evidences that preconditioning the ovarian tissue before transplantation is beneficial.

Objective

To determine the effect of hypoxic preconditioning in vitro on ovarian tissue prior to transplantation.

Methods

Eighteen female adult Wistar rats, were sorted into three experimental groups. Ovaries were maintained in DMEM low glucose serum free at 37°C with 5% CO2, at atmospheric oxigen concentration (normoxia) or 1% O2 (hypoxia) for 16 hours. Oxigen concentration was determined by injection of nitrogen in the incubator. Animals submitted to ovarian transplantation immediately after oophorectomy were the Control Group (C). After this, the ovaries were implanted in the retroperitoneum with nonabsorbable suture and animals evaluated for thirty days after transplantation. Beginning on postoperative (PO) day 11, a daily collection of vaginal smear was carried out. Analyses comprised morphological, morphometric (counting ovarian follicles and corpora lutea) and immunohistochemistry for cleaved caspase-3 (apoptosis).

Results

In normoxia and control groups all animals recovered their estrous cycles, while in the hypoxia group, two animals did not ovulate but, among those which did, resumption took longer than in the other groups (p < 0.05). The number of ovarian follicles and corpora lutea decreased significantly in the hypoxia group when compared to the other two groups (p < 0.001) and apoptosis was increased in the few ovarian follicles which remained viable (p < 0.001).

Conclusion

The hypoxic preconditioning in vitro was not beneficial to the graft and worsened their viability, compromising its functionality or delaying the return of this.

【 授权许可】

   
2014 Damous et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708012416887.pdf 829KB PDF download
Figure 4. 49KB Image download
Figure 3. 21KB Image download
Figure 2. 39KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Rodriguez-Wallberg KA, Oktay K: Options on fertility preservation in female cancer patients. Cancer Treat Rev 2012, 38(5):354-361.
  • [2]Silber SJ: Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod 2012, 18(2):59-67.
  • [3]Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB: Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 2010, 16(4):395-414.
  • [4]Dolmans MM, Jadoul P, Gilliaux S, Amorim CA, Luyckx V, Squifflet J, Donnez J, van Langendonckt A: A review of 15 years of ovarian tissue bank activities. J Assist Reprod Genet 2013, 30(3):305-314.
  • [5]Grynberg M, Poulain M, Sebag-Peyrelevade S, Le Parco S, Fanchin R, Frydman N: Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil Steril 2012, 97(6):1260-1268.
  • [6]Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG: Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196C. Endocrinology 1999, 140(1):462-471.
  • [7]Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J: Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril 2000, 74(1):122-129.
  • [8]Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J: Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 2007, 134(2):253-262.
  • [9]Schubert B, Canis M, Darcha C, Artonne C, Smitz J, Grizard G: Follicular growth and estradiol follow-up after subcutaneous xenografting of fresh and cryopreserved human ovarian tissue. Fertil Steril 2008, 89(6):1787-1794.
  • [10]Nottola SA, Camboni A, Van Langendonckt A, Demylle D, Macchiarelli G, Dolmans MM, Martinez-Madrid B, Correr S, Donnez J: Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study. Fertil Steril 2008, 90(1):23-32.
  • [11]Lan C, Xiao W, Xiao-Hui D, Chun-Yan H, Hong-Ling Y: Tissue culture before transplantation of frozen-thawed human fetal ovarian tissue into immunodeficient mice. Fertil Steril 2010, 93(3):913-919.
  • [12]Damous LL, Silva SM, Simões RS, Morello RJ, Carbonel AP, Simões MJ, Montero EFS: Remote ischemic preconditioning on neovascularization and follicle viability on ovary autotransplantation in rats. Transplant Proc 2008, 40(3):861.
  • [13]Damous LL, Silva SM, Lopes RA, Sakano CR, Simões MJ, Montero EF: Study on the vaginal smear of rats submitted to autologous ovarian transplant: impact of remote ischemic preconditioning. Acta Cir Bras 2009, 24(5):387-392.
  • [14]Zhao J, Li L, Pei Z, Li C, Wei H, Zhang B, Peng Y, Wang Y, Tao Y, Huang R: Peroxisome proliferator activated receptor (PPAR)-Î3 co-activator 1-Î ± and hypoxia induced factor-1Î ± mediate neuro- and vascular protection by hypoxic preconditioning in vitro. Brain Res 2012, 1447:1-8.
  • [15]Stubbs SL, Hsiao ST, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ: Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev 2012, 21(11):1887-1896.
  • [16]Marcondes FK, Bianchi FK, Tanno AP: Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 2002, 62(4A):609-614.
  • [17]David A, Dolmans MM, Langendonckt AV, Donnez J, Amorim CA: Immunohistochemical localization of growth factors after cryopreservation and 3 weeks’ xenotransplantation of human ovarian tissue. Fertil Steril 2011, 95:1241-1246.
  • [18]Junqueira LC, Carneiro J: Histologia básica. 11a edition. Rio de Janeiro: Guanabara Koogan; 2008.
  • [19]Aerts JMJ, Martinez-Madrid B, Leroy JLMR, Van Aelst S, Bols PEJ: Xenotransplantation by injection of a suspension of isolated preantral ovarian follicles and stroma cells under the kidney capsule of nude mice. Fertil Steril 2010, 94:708-714.
  • [20]Callejo J, Vilaseca S, Ordi J, Cabré S, Lailla JM, Balasch J: Heterotopic ovarian transplantation without vascular pedicle in syngeneic Lewis rats: long-term evaluation of effects on ovarian structure and function. Fertil Steril 2002, 77(2):396-402.
  • [21]Yang H, Lee HH, Lee HC, Ko DS, Kim SS: Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril 2008, 90(4 Suppl):1550-1558.
  • [22]Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A: Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004, 364(9443):1405-1410.
  • [23]Lieberman B: Function of ovarian tissue after long-term storage. Reprod Biomed Online 2012, 25(2):96-97.
  • [24]Labied S, Delforge Y, Munaut C, Blacher S, Colige A, Delcombel R, Henry L, Fransolet M, Jouan C, d’Hauterive SP, Noel A, Nisolle M, Foidart J-M: Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. Transplantation 2013, 95(3):426-433.
  • [25]Zhou B, Zhang PJ, Tian T, Jin C, Li Y, Feng M, Liu XY, Jie L, Tao LD: Role of vascular endothelial growth factor in protection of intrahepatic cholangiocytes mediated by hypoxic preconditioning after liver transplantation in rats. Transplant Proc 2010, 42(7):2457-2462.
  • [26]Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M, Ding X: Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013, 8(5):e62703.
  • [27]Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Philips MI, Losordo DW, Qin G: Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009, 104(10):1209-1216.
  • [28]Das R, Jahr H, van Osch GJ, Farrell E: The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev 2010, 16(2):159-168.
  • [29]Wang J, Chen T, Jiang J, Shi H, Gui C, Luo R, Xie XJ, Xiang MX, Zhang X: Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apotosis in mesenchymal stem cells. Acta Pharmacol Sin 2008, 29(1):74-82.
  • [30]Bland E, Dréau D, Burg KJ: Overcoming hypoxia to improve tissue-engineering approaches to regenerative medicine. J Tissue Eng Regen Med 2012, 7(7):505-514.
  • [31]Hsiao ST, Lokmic Z, Peshavariya H, Abberton KM, Dusting GJ, Lim SY, Dilley RJ: Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev 2013, 22(10):1614-1623.
  • [32]Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC: Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2012, 2(3):148-159.
  • [33]Yu SP, Wei Z, Wei L: Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 2013, 4(1):76-88.
  • [34]Plock J, Frese S, Keogh A, Bisch-Knaden S, Ayuni E, Corazza N, Weikert C, Jakob S, Erni D, Dufour J, Brunner T, Candinas D, Stroka D: Activation of non-ischemic, hypoxia-inducible signalling pathways up-regulate cytoprotective genes in the murine liver. J Hepatol 2007, 47:538-545.
  • [35]Merino JJ, Roncero C, Oset-Gasque MJ, Naddaf A, González MP: Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro. Int J Mol Sci 2014, 15:2475-2493.
  • [36]Wang J, Hong Z, Zeng C, Yu Q, Wang H: NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Rad Biol Med 2014, 69:278-288.
  • [37]Zhang Z, Li W, Sun D, Zhao L, Zhang R, Wang Y, Zhou X, Wang H, Cao F: Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation. Inflammation Res 2011, 60:37-45.
  文献评价指标  
  下载次数:10次 浏览次数:9次