International Journal of Pediatric Endocrinology | |
A novel homozygous SLC19A2 mutation in a Portuguese patient with diabetes mellitus and thiamine-responsive megaloblastic anaemia | |
Khalid Hussain2  Anabela Morais1  Carla Pereira4  Maha Sherif3  Lieve GJ Leijssen3  Sophia Tahir3  | |
[1] Hematology Unit, Department of Paediatrics, Hospital de Santa Maria – CHLN, Lisbon, Portugal;Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom;Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK;Endocrinology Unit, Department of Paediatrics, Hospital de Santa Maria – CHLN, Lisbon, Portugal | |
关键词: SLC19A2 mutation; Megaloblastic anaemia; Sensorineural deafness; Diabetes mellitus; TRMA; | |
Others : 1210480 DOI : 10.1186/s13633-015-0002-6 |
|
received in 2014-11-13, accepted in 2015-01-19, 发布年份 2015 | |
【 摘 要 】
Thiamine-responsive megaloblastic anaemia (TRMA) is a rare syndrome where patients present with early onset diabetes mellitus, megaloblastic anaemia and sensorineural deafness. This report describes a new case of TRMA syndrome in a female patient of Portuguese descent, born to unrelated parents. The patient was found to have a novel homozygous change R397X in exon 4 of the SLC19A2 gene, leading to a premature stop codon. The patient’s diabetes and anaemia showed a good response to daily thiamine doses, reducing the daily insulin dose requirement. The report further indicates that TRMA is not only limited to consanguineous or ethnically isolated families, and should be considered as a differential diagnosis for patients presenting with suggestive clinical symptoms.
【 授权许可】
2015 Tahir et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150605090321273.pdf | 856KB | download | |
Figure 1. | 60KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Porter FS, Rogers LE, Sidbury JB. Thiamine-responsive megaloblastic anemia. J Pediatr. 1969; 74:494-504.
- [2]Bergmann AK, Sahai I, Falcone JF, Fleming J, Bagg A, Borgna-Pignati C et al.. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J. Pediatr. 2009; 155(6):888-892.
- [3]Alzahrani AS, Baitei E, Zou M, Shi Y. Thiamine transporter mutation: an example of monogenic diabetes mellitus. Eur J Endocrinol. 2006; 155(6):787-792.
- [4]Neufeld EJ, Mandel H, Raz T, Szargel R, Yandava CN, Stagg A et al.. Localization of the gene for thiamine-responsive megaloblastic anemia syndrome, on the long arm of chromosome 1, by homozygosity mapping. Am J Hum Genet. 1997; 61(6):1335-1341.
- [5]Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T et al.. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nature Genet. 1999; 22(3):300-304.
- [6]Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD et al.. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem. 1999; 274(45):31925-31929.
- [7]Ricketts CJ, Minton JA, Samuel J, Ariyawansa I, Wales JK, Lo IF et al.. Thiamine-responsive megaloblastic anaemia syndrome: long-term follow-up and mutation analysis of seven families. Acta Paediatr. 2006; 95(1):99-104.
- [8]Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N, Neufeld EJ. The gene mutated in thiamine responsive anemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet. 1999; 22(3):305-308.
- [9]Department of Bioinformatics. Program for designing PCR primers and oligos. Available at: http://bioinfo.ut.ee/primer3.
- [10]National Center for Biotechnology Information. Search for Short Genetic Variations. Available at: http://www.ncbi.nlm.nih.gov/projects/SNP/.
- [11]The 1000 Genomes Project. A deep catalog of human genetic variation. Available at: http://www.1000genomes.org.
- [12]National Heart, Lung and Blood Institute. NHLBI Grand Opportunity Exome Sequencing Project, to discover novel mutations and mechanisms contributing to heart, lung and blood disorders. Available at: http://evs.gs.washington.edu/EVS/.
- [13]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE. 2012; 7(10):e46688.
- [14]Mozzillo E, Melis D, Falco M, Fattorusso V, Taurisano R, Flanagan SE et al.. Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings. Pediatric Diabetes. 2013; 14:384-387.
- [15]Pichler H, Zeitlhofer P, Dworzak MN, Diakos C, Haas OA, Kager L. Thiamine-responsive megaloblastic anemia (TRMA) in an Austrian boy with compound heterozygous SLC19A2mutations. Eur J Pediatr. 2012; 171:1711-1715.
- [16]Rindi G, Ferrari G. Thiamine transport by human intestine in vitro. Experientia. 1977; 33(2):211-3.
- [17]Laforenza U, Patrini C, Alvisi C, Faelli A, Licandro A, Rindi G. Thiamine uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamine deficiency. Am J Clin Nutr. 1997; 66(2):320-6.
- [18]Hoyumpa AM, Strickland R, Sheehan JJ, Yarborough G, Nichols S. Dual system of intestinal thiamine transport in humans. J Lab Clin Med. 1982; 99(5):701-8.
- [19]Reidling JC, Lambrecht N, Kassir M, Said HM. Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter-2-deficient mice. Gastroenterology. 2010; 138(5):1802-9.
- [20]Prasannan KG, Sundaresan R, Venkatesan K. Thiamine deficiency and protein secretion by pancreatic slices in vitro. Experientia. 1997; 33:169-170.
- [21]Rathanaswami P, Pourany A, Sundaresan R. Effects of thiamine deficiency on the secretion of insulin and the metabolism of glucose in isolated rat pancreatic islets. Biochem Int. 1991; 25(3):577-83.
- [22]Stagg AR, Fleming JC, Baker MA, Sakamoto M, Cohen N, Neufeld EJ. Defective high affinity thiamine transporter leads to cell death in thiamineresponsive megaloblastic anemiasy ndrome fibroblasts. J Clin Invest. 1999; 103(5):723-9.
- [23]Attias J, Raveh E, Aizer-Dannon A, Bloch-Mimouni A, Fattal-Valevski A. Auditory system dysfunction due to infantile thiamine deficiency: long-term auditory sequelae. Audiol Neurootol. 2012; 17(5):309-20.
- [24]Fleming JC, Steinkamp MP, Kawatsuji R, Tartaglini E, Pinkus JL, Pinkus GS et al.. Characterization of a murine high-affinity thiamine transporter, Slc19a2. Mol. Genet. Metab. 2001; 74:273-280.
- [25]Liberman MC, Tartaglini E, Fleming JC, Neufeld EJ. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype. J Assoc Res Otolaryngol. 2006; 7(3):211-7.
- [26]Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS et al.. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003; 21(6):577-81.
- [27]Beshlawi I, Al Zadjali S, Bashir W, Elshinawy M, Alrawas A, Wali Y. Thiamine responsive megaloblastic anemia: the puzzling phenotype. Pediatr Blood Cancer. 2014; 61(3):528-31.
- [28]Akbari MT, Zare Karizi S, Mirfakhraie R, Keikhaei B. Thiamine-responsive megaloblastic anemia syndrome with Ebstein anomaly: a case report. Eur J Pediatr. 2014; 173(12):1663-5.
- [29]Ozdemir MA, Akcakus M, Kurtoglu S, Gunes T, Torun YA. TRMA syndrome (thiamine-responsive megaloblastic anemia): a case report and review of the literature. Pediatr Diabetes. 2002; 3(4):205-9.
- [30]Setoodeh A, Haghighi A, Saleh-Gohari N, Ellard S, Haghighi A. Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia. Gene. 2013; 519(2):295-7.
- [31]Ghaemi N, Ghahraman M, Abbaszadegan MR, Baradaran-Heravi A, Vakili R. Novel mutation in the SLC19A2 gene in an Iranian family with thiamine-responsive megaloblastic anemia: a series of three cases. J Clin Res Pediatr Endocrinol. 2013; 5(3):199-201.
- [32]Valerio G, Franzese A, Poggi V, Tenore A. A long-term follow-up of diabetes in two patients with thiamine-responsive megaloblastic anemia syndrome. Diabetes Care. 1998; 21(1):38-41.
- [33]Oishi K, Hofmann S, Diaz GA, Brown T, Manwani D, Ng L et al.. Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum Mol Genet. 2002; 11(23):2951-60.
- [34]Onal H, Bariş S, Ozdil M, Yeşil G, Altun G, Ozyilmaz I et al.. Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness. Turk J Pediatr. 2009; 51(3):301-4.