BMC Veterinary Research | |
Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood | |
Inmaculada Martín-Burriel2  Clementina Rodellar2  Pilar Zaragoza3  Rosa Bolea1  Ana Rosa Remacha3  Arianne Sanz3  Beatriz Ranera3  Diego R Mediano3  Jaber Lyahyai4  | |
[1] Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain;Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain;Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, Zaragoza, 50013, Spain;Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Université Mohammed V Souissi, Rabat, Morocco | |
关键词: Neurogenesis; Peripheral blood; Mesenchymal stem cell; Sheep; | |
Others : 1119718 DOI : 10.1186/1746-6148-8-169 |
|
received in 2012-05-31, accepted in 2012-09-17, 发布年份 2012 | |
【 摘 要 】
Background
Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there in vitro properties.
Results
Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29, CD73 and CD90, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during neurogenesis.
Conclusions
This study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal lineages and to transdifferentiate into neuron-like cells in vitro. Therefore, oPB-MSCs could serve as a valuable tool for biomedical research in fields including orthopaedics or prion diseases.
【 授权许可】
2012 Lyahyai et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150208110651946.pdf | 1233KB | download | |
Figure 3. | 54KB | Image | download |
Figure 2. | 20KB | Image | download |
Figure 1. | 159KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-147.
- [2]Bossolasco P, Cova L, Calzarossa C, Rimoldi SG, Borsotti C, Deliliers GL, Silani V, Soligo D, Polli E: Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 2005, 193:312-325.
- [3]Gimble J, Guilak F: Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003, 5:362-369.
- [4]Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005, 11:1198-1211.
- [5]Guo X, Wang C, Duan C, Descamps M, Zhao Q, Dong L, Lu S, Anselme K, Lu J, Song YQ: Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng 2004, 10:1830-1840.
- [6]Scheerlinck JP, Snibson KJ, Bowles VM, Sutton P: Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 2008, 26:259-266.
- [7]Psaltis PJ, Carbone A, Nelson AJ, Lau DH, Jantzen T, Manavis J, Williams K, Itescu S, Sanders P, Gronthos S, Zannettino AC, Worthley SG: Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovasc Interv 2010, 3:974-983.
- [8]Sill B, Roy N, Hammer PE, Triedman JK, Sigg DC, Kelly MF, Nedder A, Dunning PS, Cowan DB: Development of an ovine model of pediatric complete heart block. J Surg Res 2011, 166:e103-e108.
- [9]Fauza DO, Jennings RW, Teng YD, Snyder EY: Neural stem cell delivery to the spinal cord in an ovine model of fetal surgery for spina bifida. Surgery 2008, 144:367-373.
- [10]Hunter N: Scrapie and experimental BSE in sheep. Br Med Bull 2003, 66:171-183.
- [11]Lyahyai J, Bolea R, Serrano C, Monleon E, Moreno C, Osta R, Zaragoza P, Badiola JJ, Martin-Burriel I: Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol 2006, 112:451-460.
- [12]Le Blanc K, Pittenger M: Mesenchymal stem cells: progress toward promise. Cytotherapy 2005, 7:36-45.
- [13]Krampera M, Marconi S, Pasini A, Galie M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B: Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 2007, 40:382-390.
- [14]Fadel L, Viana BR, Feitosa ML, Ercolin AC, Roballo KC, Casals JB, Pieri NC, Meirelles FV, Martins Ddos S, Miglino MA, Ambrosio CE: Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cir Bras 2011, 26:267-273.
- [15]He Q, Wan C, Li G: Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 2007, 25:69-77.
- [16]Valenti MT, Dalle Carbonare L, Donatelli L, Bertoldo F, Zanatta M, Lo Cascio V: Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 2008, 43:1084-1092.
- [17]Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP: Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24:1613-1619.
- [18]Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN: Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000, 2:477-488. BioMed Central Full Text
- [19]Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y: Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 2003, 74:833-845.
- [20]Rentsch C, Hess R, Rentsch B, Hofmann A, Manthey S, Scharnweber D, Biewener A, Zwipp H: Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell Dev Biol Anim 2010, 46:624-634.
- [21]McCarty RC, Gronthos S, Zannettino AC, Foster BK, Xian CJ: Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells. J Cell Physiol 2009, 219:324-333.
- [22]Zscharnack M, Poesel C, Galle J, Bader A: Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs 2009, 190:81-93.
- [23]Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P: Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 2010, 31:3572-3579.
- [24]Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO: A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng 2007, 13:2633-2644.
- [25]Martinez-Lorenzo MJ, Royo-Canas M, Alegre-Aguaron E, Desportes P, Castiella T, Garcia-Alvarez F, Larrad L: Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. J Orthop Res 2009, 27:1499-1507.
- [26]Rhodes NP, Srivastava JK, Smith RF, Longinotti C: Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies. J Mater Sci Mater Med 2004, 15:397-402.
- [27]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
- [28]Wang X, Moutsoglou D: Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood. In Vitro Cell Dev Biol Anim 2009, 45:584-591.
- [29]Spaas JH, Schauwer CD, Cornillie P, Meyer E, Soom AV, Van de Walle GR: Culture and characterisation of equine peripheral blood mesenchymal stromal cells. Vet J 2012. in press
- [30]Wang H, Pang B, Li Y, Zhu D, Pang T, Liu Y: Dexamethasone has variable effects on mesenchymal stromal cells. Cytotherapy 2012, 14:423-430.
- [31]Radcliffe CH, Flaminio MJ, Fortier LA: Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev 2010, 19:269-282.
- [32]Rallapalli S, Bishi DK, Verma RS, Cherian KM, Guhathakurta S: A multiplex PCR technique to characterize human bone marrow derived mesenchymal stem cells. Biotechnol Lett 2009, 31:1843-1850.
- [33]Chong PP, Selvaratnam L, Abbas AA, Kamarul T: Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 2012, 30:634-642.
- [34]Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R: Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006, 37:967-976.
- [35]Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005, 23:1105-1112.
- [36]Mrugala D, Bony C, Neves N, Caillot L, Fabre S, Moukoko D, Jorgensen C, Noel D: Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 2008, 67:288-295.
- [37]Bian ZY, Li G, Gan YK, Hao YQ, Xu WT, Tang TT: Increased number of mesenchymal stem cell-like cells in peripheral blood of patients with bone sarcomas. Arch Med Res 2009, 40:163-168.
- [38]Ranera B, Lyahyai J, Romero A, Vazquez FJ, Remacha AR, Bernal ML, Zaragoza P, Rodellar C, Martin-Burriel I: Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol 2011, 144:147-154.
- [39]Ranera B, Ordovás L, Lyahyai J, Bernal ML, Fernandes F, Romero A, Vázquez FJ, Osta R, Cons C, Varona L, Zaragoza P, Martín-Burriel I, Rodellar C: Comparative study of equine bone marrow- and adipose tissue-derived mesenchymal stem cells. Equine Vet J 2012, 44:33-42.
- [40]Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB: Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2004, 24:3430-3444.
- [41]Aguilar V, Annicotte JS, Escote X, Vendrell J, Langin D, Fajas L: Cyclin G2 regulates adipogenesis through PPAR gamma coactivation. Endocrinology 2010, 151:5247-5254.
- [42]Menssen A, Haupl T, Sittinger M, Delorme B, Charbord P, Ringe J: Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development. BMC Genomics 2011, 12:461. BioMed Central Full Text
- [43]Kim YC, Ntambi JM: Regulation of stearoyl-CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem Biophys Res Commun 1999, 266:1-4.
- [44]Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS: Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 2009, 108:577-588.
- [45]Song L, Webb NE, Song Y, Tuan RS: Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 2006, 24:1707-1718.
- [46]Gronthos S, Mrozik K, Shi S, Bartold PM: Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 2006, 79:310-317.
- [47]Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH: Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 1999, 14:1075-1083.
- [48]Liu F, Akiyama Y, Tai S, Maruyama K, Kawaguchi Y, Muramatsu K, Yamaguchi K: Changes in the expression of CD106, osteogenic genes, and transcription factors involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells. J Bone Miner Metab 2008, 26:312-320.
- [49]Zou L, Zou X, Chen L, Li H, Mygind T, Kassem M, Bunger C: Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern. J Orthop Res 2008, 26:56-64.
- [50]Sollazzo V, Palmieri A, Scapoli L, Martinelli M, Girardi A, Pellati A, Scarano A, Perrotti V, Spinelli G, Carinci F: Allogro® acts on stem cells derived from peripheral blood. The Internet Journal of Dental Science 2009., 8
- [51]Aubin JE: Bone stem cells. J Cell Biochem Suppl 1998, 30–31:73-82.
- [52]Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B: Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 2010, 38:1857-1869.
- [53]Jager M, Bachmann R, Scharfstadt A, Krauspe R: Ovine cord blood accommodates multipotent mesenchymal progenitor cells. In Vivo 2006, 20:205-214.
- [54]Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000, 61:364-370.
- [55]Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Altucci L, Peluso G, Giordano A, Galderisi U: Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 2005, 94:645-655.
- [56]Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B: Neuritogenesis: the prion protein controls beta1 integrin signaling activity. FASEB J 2012, 26:678-690.
- [57]Montzka K, Lassonczyk N, Tschoke B, Neuss S, Fuhrmann T, Franzen R, Smeets R, Brook GA, Woltje M: Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 2009, 10:16. BioMed Central Full Text
- [58]Takakura Y, Yamaguchi N, Nakagaki T, Satoh K, Kira J, Nishida N: Bone marrow stroma cells are susceptible to prion infection. Biochem Biophys Res Commun 2008, 377:957-961.
- [59]Joint Working Group on Refinement: Removal of blood from laboratory mammals and birds. First report of the BVA/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim 1993, 27:1-22.
- [60]Dervishi E, Serrano C, Joy M, Serrano M, Rodellar C, Calvo JH: Effect of the feeding system on the fatty acid composition, expression of the Delta9-desaturase, Peroxisome Proliferator-Activated Receptor Alpha, Gamma, and Sterol Regulatory Element Binding Protein 1 genes in the semitendinous muscle of light lambs of the Rasa Aragonesa breed. BMC Vet Res 2010, 6:40. BioMed Central Full Text
- [61]Garcia-Crespo D, Juste RA, Hurtado A: Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Vet Res 2005, 1:3. BioMed Central Full Text
- [62]Lyahyai J, Serrano C, Ranera B, Badiola JJ, Zaragoza P, Martin-Burriel I: Effect of scrapie on the stability of housekeeping genes. Anim Biotechnol 2010, 21:1-13.