期刊论文详细信息
Journal of Biomedical Science
Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine
Rocío Melissa Rivera1  Kevin Dale Wells1  Zhiyuan Chen1  Katherine Marie Robbins1 
[1] Division of Animal Sciences, University of Missouri, Columbia, MO, USA
关键词: Bovine;    Epigenetics;    Genomic imprinting;    Methylation;    Beckwith-Wiedemann syndrome;    PLAGL1;    CDKN1C;    KCNQ1OT1;    H19/IGF2 ICR;    KvDMR1;   
Others  :  824455
DOI  :  10.1186/1423-0127-19-95
 received in 2012-08-08, accepted in 2012-11-06,  发布年份 2012
PDF
【 摘 要 】

Background

Beckwith-Wiedemann syndrome (BWS) is a loss-of-imprinting pediatric overgrowth syndrome. The primary features of BWS include macrosomia, macroglossia, and abdominal wall defects. Secondary features that are frequently observed in BWS patients are hypoglycemia, nevus flammeus, polyhydramnios, visceromegaly, hemihyperplasia, cardiac malformations, and difficulty breathing. BWS is speculated to occur primarily as the result of the misregulation of imprinted genes associated with two clusters on chromosome 11p15.5, namely the KvDMR1 and H19/IGF2. A similar overgrowth phenotype is observed in bovine and ovine as a result of embryo culture. In ruminants this syndrome is known as large offspring syndrome (LOS). The phenotypes associated with LOS are increased birth weight, visceromegaly, skeletal defects, hypoglycemia, polyhydramnios, and breathing difficulties. Even though phenotypic similarities exist between the two syndromes, whether the two syndromes are epigenetically similar is unknown. In this study we use control Bos taurus indicus X Bos taurus taurus F1 hybrid bovine concepti to characterize baseline imprinted gene expression and DNA methylation status of imprinted domains known to be misregulated in BWS. This work is intended to be the first step in a series of experiments aimed at determining if LOS will serve as an appropriate animal model to study BWS.

Results

The use of F1 B. t. indicus x B. t. taurus tissues provided us with a tool to unequivocally determine imprinted status of the regions of interest in our study. We found that imprinting is conserved between the bovine and human in imprinted genes known to be associated with BWS. KCNQ1OT1 and PLAGL1 were paternally-expressed while CDKN1C and H19 were maternally-expressed in B. t. indicus x B. t. taurus F1 concepti. We also show that in bovids, differential methylation exists at the KvDMR1 and H19/IGF2 ICRs.

Conclusions

Based on these findings we conclude that the imprinted gene expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 ICRs are conserved between human and bovine. Future work will determine if LOS is associated with misregulation at these imprinted loci, similarly to what has been observed for BWS.

【 授权许可】

   
2012 Robbins et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713033445112.pdf 2367KB PDF download
Figure 5. 38KB Image download
Figure 4. 117KB Image download
Figure 3. 92KB Image download
Figure 2. 27KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Reik W, Walter J: Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001, 2(1):21-32.
  • [2]Verona RI, Mann MR, Bartolomei MS: Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 2003, 19:237-259.
  • [3]Zhang Y, Qu L: Non-coding RNAs and the acquisition of genomic imprinting in mammals. Sci China C Life Sci 2009, 52(3):195-204.
  • [4]Lewis A, Reik W: How imprinting centres work. Cytogenet Genome Res 2006, 113(1–4):81-89.
  • [5]Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C: Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008, 32(2):232-246.
  • [6]Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M: Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 2011, 106(1):281-288.
  • [7]Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP: Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 2003, 299(5613):1753-1755.
  • [8]Choufani S, Shuman C, Weksberg R: Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2010, 154C(3):343-354.
  • [9]Weksberg R, Shuman C, Beckwith JB: Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010, 18(1):8-14.
  • [10]Elliott M, Maher ER: Beckwith-Wiedemann syndrome. J Med Genet 1994, 31(7):560-564.
  • [11]Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, et al.: Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2005, 13(9):1025-1032.
  • [12]Weksberg R, Smith AC, Squire J, Sadowski P: Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet 2003, 12(Spec No 1):R61-R68.
  • [13]Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, Stockley TL, Best L, Chitayat D, Olney A, et al.: Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 2002, 11(11):1317-1325.
  • [14]Rump P, Zeegers MP, Van Essen AJ: Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet A 2005, 136(1):95-104.
  • [15]Manipalviratn S, DeCherney A, Segars J: Imprinting disorders and assisted reproductive technology. Fertil Steril 2009, 91(2):305-315.
  • [16]Sparago A, Russo S, Cerrato F, Ferraiuolo S, Castorina P, Selicorni A, Schwienbacher C, Negrini M, Ferrero GB, Silengo MC, et al.: Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms’ tumour. Hum Mol Genet 2007, 16(3):254-264.
  • [17]Bhogal B, Arnaudo A, Dymkowski A, Best A, Davis TL: Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 2004, 84(6):961-970.
  • [18]Cerrato F, Sparago A, Di Matteo I, Zou X, Dean W, Sasaki H, Smith P, Genesio R, Bruggemann M, Reik W, et al.: The two-domain hypothesis in Beckwith-Wiedemann syndrome: autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster. Hum Mol Genet 2005, 14(4):503-511.
  • [19]Chung WY, Yuan L, Feng L, Hensle T, Tycko B: Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms’ tumors. Hum Mol Genet 1996, 5(8):1101-1108.
  • [20]Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M, Feinberg AP: Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 1999, 96(9):5203-5208.
  • [21]Mitsuya K, Meguro M, Lee MP, Katoh M, Schulz TC, Kugoh H, Yoshida MA, Niikawa N, Feinberg AP, Oshimura M: LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 1999, 8(7):1209-1217.
  • [22]Horike S, Mitsuya K, Meguro M, Kotobuki N, Kashiwagi A, Notsu T, Schulz TC, Shirayoshi Y, Oshimura M: Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 2000, 9(14):2075-2083.
  • [23]DeBaun MR, Niemitz EL, Feinberg AP: Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 2003, 72(1):156-160.
  • [24]Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C: The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 2006, 43(12):902-907.
  • [25]Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, Cerrato F, Russo S, Ferraiuolo S, Rinaldi MM, et al.: Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2009, 17(5):611-619.
  • [26]Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, Lam W, Oley C, Cole T, Brueton LA, et al.: Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 2009, 24(3):741-747.
  • [27]Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N: ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 2005, 33(8):2650-2660.
  • [28]Valleley EM, Cordery SF, Bonthron DT: Tissue-specific imprinting of the ZAC/PLAGL1 tumour suppressor gene results from variable utilization of monoallelic and biallelic promoters. Hum Mol Genet 2007, 16(8):972-981.
  • [29]Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, et al.: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 2006, 11(5):711-722.
  • [30]Young LE, Sinclair KD, Wilmut I: Large offspring syndrome in cattle and sheep. Rev Reprod 1998, 3(3):155-163.
  • [31]Farin PW, Farin CE: Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biol Reprod 1995, 52(3):676-682.
  • [32]Blondin P, Farin PW, Crosier AE, Alexander JE, Farin CE: In vitro production of embryos alters levels of insulin-like growth factor-II messenger ribonucleic acid in bovine fetuses 63 days after transfer. Biol Reprod 2000, 62(2):384-389.
  • [33]Bertolini M, Anderson GB: The placenta as a contributor to production of large calves. Theriogenology 2002, 57(1):181-187.
  • [34]Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C: Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod 2002, 67(3):767-775.
  • [35]McEvoy TG, Robinson JJ, Aitken RP, Findlay PA, Robertson IS: Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim Reprod Sci 1997, 47(1–2):71-90.
  • [36]Sangild PT, Schmidt M, Jacobsen H, Fowden AL, Forhead A, Avery B, Greve T: Blood chemistry, nutrient metabolism, and organ weights in fetal and newborn calves derived from in vitro-produced bovine embryos. Biol Reprod 2000, 62(6):1495-1504.
  • [37]Hiendleder S, Mund C, Reichenbach HD, Wenigerkind H, Brem G, Zakhartchenko V, Lyko F, Wolf E: Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol Reprod 2004, 71(1):217-223.
  • [38]Farin PW, Piedrahita JA, Farin CE: Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 2006, 65(1):178-191.
  • [39]Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM: Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 1995, 375(6526):34-39.
  • [40]Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M, Tanaka T, Ozawa T, Horike S: Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci 2010, 122(3–4):303-312.
  • [41]Couldrey C, Lee RS: DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC Dev Biol 2010, 10:27. BioMed Central Full Text
  • [42]MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG: Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 1997, 146(3):1071-1086.
  • [43]Heaton MP, Grosse WM, Kappes SM, Keele JW, Chitko-McKown CG, Cundiff LV, Braun A, Little DP, Laegreid WW: Estimation of DNA sequence diversity in bovine cytokine genes. Mamm Genome 2001, 12(1):32-37.
  • [44]Taylor KH, Taylor JF, White SN, Womack JE: Identification of genetic variation and putative regulatory regions in bovine CARD15. Mamm Genome 2006, 17(8):892-901.
  • [45]Cezar GG, Bartolomei MS, Forsberg EJ, First NL, Bishop MD, Eilertsen KJ: Genome-wide epigenetic alterations in cloned bovine fetuses. Biol Reprod 2003, 68(3):1009-1014.
  • [46]Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS: Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008, 17(1):1-14.
  • [47]Takai D, Gonzales FA, Tsai YC, Thayer MJ, Jones PA: Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet 2001, 10(23):2619-2626.
  • [48]Beatty L, Weksberg R, Sadowski PD: Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11. Genomics 2006, 87(1):46-56.
  • [49]Cerrato F, Sparago A, Verde G, De Crescenzo A, Citro V, Cubellis MV, Rinaldi MM, Boccuto L, Neri G, Magnani C, et al.: Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms’ tumour. Hum Mol Genet 2008, 17(10):1427-1435.
  • [50]Ideraabdullah FY, Vigneau S, Bartolomei MS: Genomic imprinting mechanisms in mammals. Mutat Res 2008, 647(1–2):77-85.
  • [51]Qian N, Frank D, O’Keefe D, Dao D, Zhao L, Yuan L, Wang Q, Keating M, Walsh C, Tycko B: The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet 1997, 6(12):2021-2029.
  • [52]Paulsen M, El-Maarri O, Engemann S, Strodicke M, Franck O, Davies K, Reinhardt R, Reik W, Walter J: Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum Mol Genet 2000, 9(12):1829-1841.
  • [53]Weber M, Milligan L, Delalbre A, Antoine E, Brunel C, Cathala G, Forne T: Extensive tissue-specific variation of allelic methylation in the Igf2 gene during mouse fetal development: relation to expression and imprinting. Mech Dev 2001, 101(1–2):133-141.
  • [54]Mancini-DiNardo D, Steele SJ, Ingram RS, Tilghman SM: A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum Mol Genet 2003, 12(3):283-294.
  • [55]Gabory A, Ripoche MA, Yoshimizu T, Dandolo L: The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 2006, 113(1–4):188-193.
  • [56]Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, Hemberger M, Reik W: Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 2006, 133(21):4203-4210.
  • [57]Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM: Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev 1999, 13(23):3115-3124.
  • [58]Weksberg R, Shen DR, Fei YL, Song QL, Squire J: Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 1993, 5(2):143-150.
  • [59]Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH: The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 1993, 5(1):74-78.
  • [60]Xu Y, Goodyer CG, Deal C, Polychronakos C: Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun 1993, 197(2):747-754.
  • [61]Mizuno Y, Sotomaru Y, Katsuzawa Y, Kono T, Meguro M, Oshimura M, Kawai J, Tomaru Y, Kiyosawa H, Nikaido I, et al.: Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem Biophys Res Commun 2002, 290(5):1499-1505.
  • [62]Sandell LL, Guan XJ, Ingram R, Tilghman SM: Gatm, a creatine synthesis enzyme, is imprinted in mouse placenta. Proc Natl Acad Sci USA 2003, 100(8):4622-4627.
  • [63]Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE: Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 2006, 103(17):6623-6628.
  • [64]Miziara MN, Riggs PK, Amaral ME: Comparative analysis of noncoding sequences of orthologous bovine and human gene pairs. Genet Mol Res 2004, 3(4):465-473.
  • [65]Khatib H, Zaitoun I, Kim ES: Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome 2007, 18(6–7):538-547.
  • [66]Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, Raney B, Burhans R, King DC, Baertsch R, Blankenberg D, et al.: 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res 2007, 17(12):1797-1808.
  • [67]Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y: In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003, 72(5):1338-1341.
  • [68]Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, et al.: Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 2003, 40(1):62-64.
  • [69]Halliday J, Oke K, Breheny S, Algar E, JA D: Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet 2004, 75(3):526-528.
  • [70]Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, Clayton-Smith J, Brueton LA, Bannister W, Maher ER: Assisted reproductive therapies and imprinting disorders–a preliminary British survey. Hum Reprod 2006, 21(4):1009-1011.
  • [71]Robbins KM, Wells KD, Geary T, O’Gorman C, MacNeil MD, Smith MF, Pohler K, Jinks E, Rivera RM: Establishment of a phenotypical model of adverse outcomes associated with assisted reproductive technologies. Biol Reprod 2010, 83:316.
  文献评价指标  
  下载次数:43次 浏览次数:23次