期刊论文详细信息
BMC Developmental Biology
DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development
Trudee Fair2  Solomon Mamo2  Marijke E Beltman2  Niamh Forde2  Lynee C O’Shea2  David A Magee1  Alan M O’Doherty3 
[1] College of Agriculture, Health and Natural Resources, Animal Science, University of Connecticut, Connecticut, USA;School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland;School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
关键词: DNA methyltransferases;    Epigenetic reprogramming;    Preimplantation embryos;    Bovine;    Genomic imprinting;    DNA methylation;    Embryo;   
Others  :  1161039
DOI  :  10.1186/s12861-015-0060-2
 received in 2014-05-22, accepted in 2015-02-12,  发布年份 2015
PDF
【 摘 要 】

Background

In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation.

Results

To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization.

Conclusion

The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization.

【 授权许可】

   
2015 O'Doherty et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150412011946353.pdf 1872KB PDF download
Figure 5. 19KB Image download
Figure 4. 80KB Image download
Figure 3. 26KB Image download
Figure 2. 115KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Preece MA, Moore GE: Genomic imprinting, uniparental disomy and foetal growth. Trends Endocrinol Metab 2000, 11(7):270-5.
  • [2]Fowden AL, Sibley C, Reik W, Constancia M: Imprinted genes, placental development and fetal growth. Horm Res 2006, 65(Suppl 3):50-8.
  • [3]Smith FM, Garfield AS, Ward A: Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 2006, 113(1–4):279-91.
  • [4]Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, et al.: Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet 2005, 37(6):625-9.
  • [5]Reik W, Walter J: Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001, 2(1):21-32.
  • [6]Delaval K, Feil R: Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004, 14(2):188-95.
  • [7]Davis TL, Yang GJ, McCarrey JR, Bartolomei MS: The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 2000, 9(19):2885-94.
  • [8]Li JY, Lees-Murdock DJ, Xu GL, Walsh CP: Timing of establishment of paternal methylation imprints in the mouse. Genomics 2004, 84(6):952-60.
  • [9]Hiura H, Obata Y, Komiyama J, Shirai M, Kono T: Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 2006, 11(4):353-61.
  • [10]Lucifero D, Mann MR, Bartolomei MS, Trasler JM: Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 2004, 13(8):839-49.
  • [11]O’Doherty AM, O’Shea LC, Fair T: Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins. Biol Reprod 2012, 86(3):67.
  • [12]Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, et al.: Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 2001, 98(24):13734-8.
  • [13]Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T: Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 2007, 39(3):295-302.
  • [14]Mayer W, Niveleau A, Walter J, Fundele R, Haaf T: Demethylation of the zygotic paternal genome. Nature 2000, 403(6769):501-2.
  • [15]Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al.: Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000, 10(8):475-8.
  • [16]Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science 2001, 293(5532):1089-93.
  • [17]Olek A, Walter J: The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet 1997, 17(3):275-6.
  • [18]Tremblay KD, Duran KL, Bartolomei MS: A 5’ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 1997, 17(8):4322-9.
  • [19]Imamura T, Kerjean A, Heams T, Kupiec JJ, Thenevin C, Paldi A: Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J Biol Chem 2005, 280(20):20171-5.
  • [20]Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al.: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 2011, 43(8):811-4.
  • [21]Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al.: A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 2012, 484(7394):339-44.
  • [22]Niemann H, Carnwath JW, Herrmann D, Wieczorek G, Lemme E, Lucas-Hahn A, et al.: DNA methylation patterns reflect epigenetic reprogramming in bovine embryos. Cell Reprogram 2010, 12(1):33-42.
  • [23]Gebert C, Wrenzycki C, Herrmann D, Groger D, Thiel J, Reinhardt R, et al.: DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics 2009, 94(1):63-9.
  • [24]Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, et al.: Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 2011, 138(5):811-20.
  • [25]Smallwood SA, Kelsey G: De novo DNA methylation: a germ cell perspective. Trends Genet 2012, 28(1):33-42.
  • [26]Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, et al.: De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 1996, 122(10):3195-205.
  • [27]Chen T, Li E: Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 2006, 301:179-201.
  • [28]Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE: UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 2007, 317(5845):1760-4.
  • [29]Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99(3):247-57.
  • [30]Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69(6):915-26.
  • [31]Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH: Dnmt3L and the establishment of maternal genomic imprints. Science 2001, 294(5551):2536-9.
  • [32]Bourc’his D, Bestor TH: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004, 431(7004):96-9.
  • [33]Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J, et al.: Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 2005, 102(11):4068-73.
  • [34]Hata K, Okano M, Lei H, Li E: Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002, 129(8):1983-93.
  • [35]Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB: Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 2012, 335(6075):1499-502.
  • [36]Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M, Cullen DE, et al.: Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 2012, 287(3):2107-18.
  • [37]Wu H, Zhang Y: Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014, 156(1–2):45-68.
  • [38]Edwards JL, Schrick FN, McCracken MD, van Amstel SR, Hopkins FM, Welborn MG, et al.: Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 2003, 50(2):113-23.
  • [39]Young LE, Sinclair KD, Wilmut I: Large offspring syndrome in cattle and sheep. Rev Reprod 1998, 3(3):155-63.
  • [40]Hill JR, Burghardt RC, Jones K, Long CR, Looney CR, Shin T, et al.: Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 2000, 63(6):1787-94.
  • [41]Alexopoulos NI, Maddox-Hyttel P, Tveden-Nyborg P, D’Cruz NT, Tecirlioglu TR, Cooney MA, et al.: Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine days 14 and 21 embryos: implications for embryonic loss. Reproduction 2008, 136(4):433-45.
  • [42]Panarace M, Aguero JI, Garrote M, Jauregui G, Segovia A, Cane L, et al.: How healthy are clones and their progeny: 5 years of field experience. Theriogenology 2007, 67(1):142-51.
  • [43]Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, et al.: Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 2001, 28(2):173-7.
  • [44]Rideout WM 3rd, Eggan K, Jaenisch R: Nuclear cloning and epigenetic reprogramming of the genome. Science 2001, 293(5532):1093-8.
  • [45]Lucifero D, Suzuki J, Bordignon V, Martel J, Vigneault C, Therrien J, et al.: Bovine SNRPN methylation imprint in oocytes and day 17 in vitro-produced and somatic cell nuclear transfer embryos. Biol Reprod 2006, 75(4):531-8.
  • [46]Robbins KM, Chen Z, Wells KD, Rivera RM: Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J Biomed Sci 2012, 19:95. BioMed Central Full Text
  • [47]Yamanaka K, Sakatani M, Kubota K, Balboula AZ, Sawai K, Takahashi M: Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. J Reprod Dev 2011, 57(3):393-402.
  • [48]Dobbs KB, Rodriguez M, Sudano MJ, Ortega MS, Hansen PJ: Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One 2013, 8(6):e66230.
  • [49]Hou J, Liu L, Lei T, Cui X, An X, Chen Y: Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. Sci China C Life Sci 2007, 50(1):56-61.
  • [50]Beltman ME, Lonergan P, Diskin MG, Roche JF, Crowe MA: Effect of progesterone supplementation in the first week post conception on embryo survival in beef heifers. Theriogenology 2009, 71(7):1173-9.
  • [51]Forde N, Beltman ME, Duffy GB, Duffy P, Mehta JP, O’Gaora P, et al.: Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol Reprod 2011, 84(2):266-78.
  • [52]Curchoe CL, Zhang S, Yang L, Page R, Tian XC: Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle. Anim Reprod Sci 2009, 116(3–4):213-25.
  • [53]Levene H: Robust tests for equal variance. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I Olkin et al eds Stanford University Press 1960; 15(74):278-279
  • [54]Mamo S, Mehta JP, McGettigan P, Fair T, Spencer TE, Bazer FW, et al.: RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol Reprod 2011, 85(6):1143-51.
  • [55]Gustafsson H, Ploen L: The morphology of 16 and 17 day old bovine blastocysts from virgin and repeat breeder heifers. Anat Histol Embryol 1986, 15(3):277-87.
  • [56]Maddox-Hyttel P, Alexopoulos NI, Vajta G, Lewis I, Rogers P, Cann L, et al.: Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 2003, 125(4):607-23.
  • [57]Messerschmidt DM: Should I stay or should I go: Protection and maintenance of DNA methylation at imprinted genes. Epigenetics 2012, 7(9):969-75.
  • [58]Gastwirth JL, Yulia R, Weiwen M: The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Statistical Sci 2009, 24(3):343-60.
  • [59]Huntriss J, Woodfine K, Huddleston JE, Murrell A, Rutherford AJ, Elder K, et al.: Quantitative analysis of DNA methylation of imprinted genes in single human blastocysts by pyrosequencing. Fertil Steril 2011, 95(8):2564-7. e2561-2568
  • [60]Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR: Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010, 19(1):36-51.
  • [61]Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, et al.: Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 1998, 207(8):551-61.
  • [62]Durcova-Hills G, Burgoyne P, McLaren A: Analysis of sex differences in EGC imprinting. Dev Biol 2004, 268(1):105-10.
  • [63]Durcova-Hills G, Hajkova P, Sullivan S, Barton S, Surani MA, McLaren A: Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc Natl Acad Sci U S A 2006, 103(30):11184-8.
  • [64]Douglas GC, VandeVoort CA, Kumar P, Chang TC, Golos TG: Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 2009, 30(3):228-40.
  • [65]Reik W, Constancia M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, et al.: Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 2003, 547(Pt 1):35-44.
  • [66]Guillomot M, Taghouti G, Constant F, Degrelle S, Hue I, Chavatte-Palmer P, et al.: Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta. Placenta 2010, 31(6):482-90.
  • [67]Su JM, Yang B, Wang YS, Li YY, Xiong XR, Wang LJ, et al.: Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves. Theriogenology 2011, 75(7):1346-59.
  • [68]Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al.: A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008, 15(4):547-57.
  • [69]Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al.: In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 2011, 44(3):361-72.
  • [70]Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, et al.: Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 2013, 341(6150):1110-2.
  文献评价指标  
  下载次数:21次 浏览次数:7次