Cancer Cell International | |
The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase | |
Philip J Hogg1  Pierre J Dilda1  Gabriel G Perrone2  Joyce Chiu1  Danielle Park1  | |
[1] Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia;Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia | |
关键词: PENAO; GSAO; Adenine nucleotide translocase; Mitochondria; Tumour metabolism; | |
Others : 795166 DOI : 10.1186/1475-2867-12-11 |
|
received in 2011-12-20, accepted in 2012-03-26, 发布年份 2012 | |
【 摘 要 】
Background
GSAO (4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid) and PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid) are tumour metabolism inhibitors that target adenine nucleotide translocase (ANT) of the inner-mitochondrial membrane. Both compounds are currently being trialled in patients with solid tumours. The trivalent arsenical moiety of GSAO and PENAO reacts with two matrix facing cysteine residues of ANT, inactivating the transporter. This leads to proliferation arrest and death of tumour and tumour-supporting cells.
Results
The two reactive ANT cysteine residues have been identified in this study by expressing cysteine mutants of human ANT1 in Saccharomyces cerevisiae and measuring interaction with the arsenical moiety of GSAO and PENAO. The arsenic atom of both compounds cross-links cysteine residues 57 and 257 of human ANT1.
Conclusions
The sulphur atoms of these two cysteines are 20 Å apart in the crystal structures of ANT and the optimal spacing of cysteine thiolates for reaction with As (III) is 3-4 Å. This implies that a significant conformational change in ANT is required for the organoarsenicals to react with cysteines 57 and 257. This conformational change may relate to the selectivity of the compounds for proliferating cells.
【 授权许可】
2012 Park et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705082310227.pdf | 2149KB | download | |
Figure 3. | 56KB | Image | download |
Figure 2. | 61KB | Image | download |
Figure 1. | 33KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Ramsay EE, Hogg PJ, Dilda PJ: Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 2011, 28:2731-2744.
- [2]Rempel A, Bannasch P, Mayer D: Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochim Biophys Acta 1994, 1219(3):660-668.
- [3]Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH: Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 2002, 1555(1-3):14-20.
- [4]Goel A, Mathupala SP, Pedersen PL: Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003, 278(17):15333-15340.
- [5]Mathupala SP, Rempel A, Pedersen PL: Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 2001, 276(46):43407-43412.
- [6]Halestrap AP: What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 2009, 46(6):821-831.
- [7]Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ: A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 2003, 3(5):497-509.
- [8]Dilda PJ, Ramsay EE, Corti A, Pompella A, Hogg PJ: Metabolism of the tumor angiogenesis inhibitor 4-(N-(S-Glutathionylacetyl)amino)phenylarsonous acid. J Biol Chem 2008, 283(51):35428-35434.
- [9]Dilda PJ, Decollogne S, Weerakoon L, Norris MD, Haber M, Allen JD, Hogg PJ: Optimization of the antitumor efficacy of a synthetic mitochondrial toxin by increasing the residence time in the cytosol. J Med Chem 2009, 52(20):6209-6216.
- [10]Donoghue N, Yam PT, Jiang XM, Hogg PJ: Presence of closely spaced protein thiols on the surface of mammalian cells. Protein Sci 2000, 9(12):2436-2445.
- [11]Halestrap AP, McStay GP, Clarke SJ: The permeability transition pore complex: another view. Biochimie 2002, 84(2-3):153-166.
- [12]Drgon T, Sabova L, Gavurnikova G, Kolarov J: Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletion produces different phenotypes. FEBS Lett 1992, 304(2-3):277-280.
- [13]De Marcos Lousa C, Trezeguet V, Dianoux AC, Brandolin G, Lauquin GJ: The human mitochondrial ADP/ATP carriers: kinetic properties and biogenesis of wild-type and mutant proteins in the yeast S. cerevisiae. Biochemistry 2002, 41(48):14412-14420.
- [14]McStay GP, Clarke SJ, Halestrap AP: Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 2002, 367(Pt 2):541-548.
- [15]Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 2003, 426(6962):39-44.
- [16]Nury H, Dahout-Gonzalez C, Trezeguet V, Lauquin G, Brandolin G, Pebay-Peyroula E: Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 2005, 579(27):6031-6036.
- [17]Adams E, Jeter D, Cordes AW, Kolis JW: Chemistry of organometalloid complexes with potential antidotes: structure of an organoarsenic(III) dithiolate ring. Inorg Chem 1990, 29:1500-1503.
- [18]Bhattacharjee H, Rosen BP: Spatial proximity of Cys113, Cys172, and Cys422 in the metalloactivation domain of the ArsA ATPase. J Biol Chem 1996, 271(40):24465-24470.
- [19]Murgia M, Giorgi C, Pinton P, Rizzuto R: Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. J Mol Cell Cardiol 2009, 46(6):781-788.
- [20]Hatanaka T, Takemoto Y, Hashimoto M, Majima E, Shinohara Y, Terada H: Significant expression of functional human type 1 mitochondrial ADP/ATP carrier in yeast mitochondria. Biol Pharm Bull 2001, 24(6):595-599.
- [21]Alberti S, Gitler AD, Lindquist S: A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 2007, 24(10):913-919.
- [22]Adams BG: Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol 1972, 111(2):308-315.
- [23]Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 2002, 350:87-96.
- [24]Ronicke V, Graulich W, Mumberg D, Muller R, Funk M: Use of conditional promoters for expression of heterologous proteins in Saccharomyces cerevisiae. Methods Enzymol 1997, 283:313-322.
- [25]Kissova I, Polcic P, Kempna P, Zeman I, Sabova L, Kolarov J: The cytotoxic action of Bax on yeast cells does not require mitochondrial ADP/ATP carrier but may be related to its import to the mitochondria. FEBS Lett 2000, 471(1):113-118.
- [26]Polcicova K, Kempna P, Sabova L, Gavurnikova G, Polcic P, Kolarov J: The delivery of ADP/ATP carrier protein to mitochondria probed by fusions with green fluorescent protein and beta-galactosidase. FEMS Yeast Res 2003, 4(3):315-321.
- [27]Bauer MKA, Schubert A, Rocks O, Grimm S: Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol 1999, 147(7):1493-1501.
- [28]Zamora M, Merono C, Vinas O, Mampel T: Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J Biol Chem 2004, 279(37):38415-38423.
- [29]Abramoff MD, Magalhaes PJ, Ram SJ: Image Processing with ImageJ. Biophotonics International 2004, 11(7):36-42.
- [30]Daum G, Bohni PC, Schatz G: Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 1982, 257(21):13028-13033.
- [31]DeLano WL: The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA; 2002.