期刊论文详细信息
Lipids in Health and Disease
Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model
Ondřej Šeda2  Vladimír Křen1  Drahomíra Křenová1  Lucie Šedová1  František Liška1  Michaela Krupková1 
[1] Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University and the General Teaching Hospital, Albertov 4, 12800 Prague, Czech Republic;Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
关键词: Zbtb16;    All-trans retinoic acid;    Muscle transcriptome;    Animal model;    Metabolic syndrome;    Pharmacogenomics;   
Others  :  1145605
DOI  :  10.1186/1476-511X-13-172
 received in 2014-08-03, accepted in 2014-10-29,  发布年份 2014
PDF
【 摘 要 】

Background

All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain.

Methods

Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation.

Results

In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG).

Conclusions

According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA.

【 授权许可】

   
2014 Krupková et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150402115749641.pdf 944KB PDF download
Figure 3. 59KB Image download
Figure 2. 56KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kedishvili NY: Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 2013, 54:1744-1760.
  • [2]Ross SA, McCaffery PJ, Drager UC, De Luca LM: Retinoids in embryonal development. Physiol Rev 2000, 80:1021-1054.
  • [3]Pomerantz H, Weinstock MA: Predictors of local adverse effects from topical tretinoin cream 0.1% in the VATTC trial. Br J Dermatol 2014, 171:642-645.
  • [4]Lilley JS, Linton MF, Fazio S: Oral retinoids and plasma lipids. Dermatol Ther 2013, 26:404-410.
  • [5]Vu-Dac N, Gervois P, Torra IP, Fruchart JC, Kosykh V, Kooistra T, Princen HM, Dallongeville J, Staels B: Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids. J Clin Invest 1998, 102:625-632.
  • [6]Mamoon A, Subauste A, Subauste MC, Subauste J: Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes. Gene 2014, 550:165-170.
  • [7]Broulik PD, Raska I, Broulikova K: Prolonged overdose of all-trans retinoic acid enhances bone sensitivity in castrated mice. Nutrition 2013, 29:1166-1169.
  • [8]Atigadda VR, Xia G, Deshpande A, Boerma LJ, Lobo Ruppert SM, Grubbs CJ, Smith CD, Brouillette WJ, Muccio DD: Methyl-substitution of a rexinoid agonist improves potency and reveals site of lipid toxicity. J Med Chem 2014, 57:5370-5380.
  • [9]Guleria RS, Singh AB, Nizamutdinova IT, Souslova T, Mohammad AA, Kendall JA Jr, Baker KM, Pan J: Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J Mol Cell Cardiol 2013, 57:106-118.
  • [10]Bila V, Kren V, Liska F: The influence of the genetic background on the interaction of retinoic acid with Lx mutation of the rat. Folia Biol (Praha) 2000, 46:264-272.
  • [11]Krupkova M, Janku M, Liska F, Sedova L, Kazdova L, Krenova D, Kren V, Seda O: Pharmacogenetic model of retinoic acid-induced dyslipidemia and insulin resistance. Pharmacogenomics 2009, 10:1915-1927.
  • [12]Seda O, Liska F, Sedova L, Kazdova L, Krenova D, Kren V: A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia Biol (Praha) 2005, 51:53-61.
  • [13]Liska F, Mancini M, Krupkova M, Chylikova B, Krenova D, Seda O, Silhavy J, Mlejnek P, Landa V, Zidek V, d' Amati G, Pravenec M, Křen V: Plzf as a candidate gene predisposing the spontaneously hypertensive rat to hypertension, left ventricular hypertrophy, and interstitial fibrosis. Am J Hypertens 2014, 27:99-106.
  • [14]Desphande A, Xia G, Boerma LJ, Vines KK, Atigadda VR, Lobo-Ruppert S, Grubbs CJ, Moeinpour FL, Smith CD, Christov K, Brouillette WJ, Muccio DD: Methyl-substituted conformationally constrained rexinoid agonists for the retinoid X receptors demonstrate improved efficacy for cancer therapy and prevention. Bioorg Med Chem 2014, 22:178-185.
  • [15]Quere R, Baudet A, Cassinat B, Bertrand G, Marti J, Manchon L, Piquemal D, Chomienne C, Commes T: Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood 2007, 109:4450-4460.
  • [16]Veal GJ, Errington J, Rowbotham SE, Illingworth NA, Malik G, Cole M, Daly AK, Pearson AD, Boddy AV: Adaptive dosing approaches to the individualization of 13-cis-retinoic acid (isotretinoin) treatment for children with high-risk neuroblastoma. Clin Cancer Res 2013, 19:469-479.
  • [17]Lee JJ, Wu X, Hildebrandt MA, Yang H, Khuri FR, Kim E, Gu J, Ye Y, Lotan R, Spitz MR, Hong WK: Global assessment of genetic variation influencing response to retinoid chemoprevention in head and neck cancer patients. Cancer Prev Res (Phila) 2011, 4:185-193.
  • [18]Kren V: Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ Carol Med Monogr 1975, 68:1-103.
  • [19]Bila V, Kren V: The teratogenic action of retinoic acid in rat congenic and recombinant inbred strains. Folia Biol (Praha) 1996, 42:167-173.
  • [20]Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, Krejci E, Sedmera D, Grim M, Krenova D, Kren V: Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn 2009, 238:673-684.
  • [21]Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N: Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 2012, 61:1112-1121.
  • [22]Li Y, Wong K, Walsh K, Gao B, Zang M: Retinoic acid receptor beta stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem 2013, 288:10490-10504.
  • [23]Berry DC, Noy N: All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 2009, 29:3286-3296.
  • [24]Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 2011, 108:14608-14613.
  • [25]Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
  • [26]Stamatikos AD, Paton CM: Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab 2013, 305:E767-E775.
  • [27]Martin PJ, Delmotte MH, Formstecher P, Lefebvre P: PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept 2003, 1:6. BioMed Central Full Text
  • [28]Constantinides MG, McDonald BD, Verhoef PA, Bendelac A: A committed precursor to innate lymphoid cells. Nature 2014, 508:397-401.
  • [29]Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE: Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004, 36:647-652.
  • [30]Barna M, Hawe N, Niswander L, Pandolfi PP: Plzf regulates limb and axial skeletal patterning. Nat Genet 2000, 25:166-172.
  • [31]Forsthoefel PF: The skeletal effects of the luxoid gene in the mouse, including its interactions withthe luxate gene. J Morphol 1958, 102:247-287.
  • [32]Ching YH, Wilson LA, Schimenti JC: An allele separating skeletal patterning and spermatogonial renewal functions of PLZF. BMC Dev Biol 2010, 10:33. BioMed Central Full Text
  • [33]Chen S, Qian J, Shi X, Gao T, Liang T, Liu C: Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol Endocrinol 2014. http://dx.doi.org/10.1210/me.2014-1164 webcite
  • [34]Hamet P, Pausova Z, Dumas P, Sun YL, Tremblay J, Pravenec M, Kunes J, Krenova D, Kren V: Newborn and adult recombinant inbred strains: a tool to search for genetic determinants of target organ damage in hypertension. Kidney Int 1998, 53:1488-1492.
  • [35]Haloui M, Tremblay J, Seda O, Koltsova SV, Maksimov GV, Orlov SN, Hamet P: Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats. Hypertension 2013, 62:731-737.
  • [36]Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, Peng J, Pelinkova K, Tremblay J, Hamet P, Kren V: Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics 2005, 21:243-252.
  • [37]Zhong JC, Huang DY, Yang YM, Li YF, Liu GF, Song XH, Du K: Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension 2004, 44:907-912.
  • [38]Laulederkind SJ, Hayman GT, Wang SJ, Smith JR, Lowry TF, Nigam R, Petri V, de Pons J, Dwinell MR, Shimoyama M, Munzenmaier DH, Worthey EA, Jacob HJ: The Rat Genome Database 2013–data, tools and users. Brief Bioinform 2013, 14:520-526.
  • [39]Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J 1963, 27:282-293.
  • [40]Usui S, Hara Y, Hosaki S, Okazaki M: A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 2002, 43:805-814.
  • [41]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:18次 浏览次数:8次