期刊论文详细信息
Journal of Translational Medicine
Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy
Ngoc K Phan1  Kiet D Truong1  Dong V Le2  Thuy T Duong1  Nhung H Truong1  Nhung T Nguyen1  Nhan LC Phan1  Phuc V Pham1 
[1] Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, 227 Nguyen Van Cu, District 5, HCM City, Vietnam;Department of Immunology, Vietnam Military Medical University, 104 Phung Hung, Ha Dong, Ha Noi, Vietnam
关键词: Knockdown;    Differentiation therapy;    Differentiation;    CD44;    Breast cancer cells;    Breast cancer stem cells;   
Others  :  1207809
DOI  :  10.1186/1479-5876-9-209
 received in 2011-09-02, accepted in 2011-12-07,  发布年份 2011
PDF
【 摘 要 】

Background

Breast cancer stem cells (BCSCs) are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs).

Methods

We isolated a breast cancer cell population (CD44+CD24- cells) from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs.

Results

Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs.

Conclusions

Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

【 授权许可】

   
2011 Pham et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150530110842984.pdf 3050KB PDF download
Figure 7. 41KB Image download
Figure 6. 63KB Image download
Figure 5. 76KB Image download
Figure 4. 79KB Image download
Figure 3. 54KB Image download
Figure 2. 92KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100(7):3983-8.
  • [2]Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F, Wicha MS, Birnbaum D, Charafe-Jauffret E: Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 2009, 8(20):3297-302.
  • [3]Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L: Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008, 10(1):R10. BioMed Central Full Text
  • [4]Phuc PV, Khuong TTT, Dong LV, Kiet TD, Giang TT, Ngoc PK: Isolation and characterization of breast cancer stem cells from malignant tumours in Vietnamese women. JCAB 2010, 4(12):163-16.
  • [5]Dave B, Chang J: Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 2009, 14:79-82.
  • [6]Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM: WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 2007, 104(2):618-23.
  • [7]Wang S, Yang D, Lippman ME: Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol 2003, 30(5 Suppl 16):133-42.
  • [8]Frosina G: DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009, 7(7):989-99.
  • [9]Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, Visvader JE, Lindeman GJ: Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 2006, 98(14):1011-4.
  • [10]Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA: Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xeno-grafts. Proc Natl Acad SciUSA 2008, 147(9):4056-66.
  • [11]Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad SciUSA 2009, 106(33):13820-5.
  • [12]Vorechovsky' I, Benediktsson KP, Toftgård R: The patched/hedgehog/smoothened signalling pathway in human breast cancer: No evidence for H133Y SHH, PTCH and SMO mutations. Eur J Cancer 1999, 35(5):711-3.
  • [13]Soriano JV, Uyttendaele H, Kitajewski J, Montesano R: Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer 2000, 86:652-659.
  • [14]Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W: Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 2000, 148(3):567-78.
  • [15]Kelly OG, Pinson KI, Skarnes WC: The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 2004, 131(12):2803-15.
  • [16]Pasca di Magliano M, Hebrok M: Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003, 3(12):903-11.
  • [17]Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004, 431(7009):707-12.
  • [18]Liu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005, 7(3):86-95. BioMed Central Full Text
  • [19]Korkaya H, Paulson A, Iovino F, Wicha MS: HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008, 27(47):6120-30.
  • [20]Mariani G, Fasolo A, De Benedictis E, Gianni L: Trastuzumab as adjuvant systemic therapy for HER2-positive breast cancer. Nat Clin Pract Oncol 2009, 6(2):93-104.
  • [21]Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D: PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004, 6(2):117-27.
  • [22]Carlsson J, Nordgren H, Sjöström J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C: HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 2004, 90(12):2344-8.
  • [23]Adamia S, Maxwell CA, Pilarski LM: Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 2005, 5(1):3-14.
  • [24]Phuc PV, Nhan PLC, Nhung TH, Tam NT, Hoang NM, Tue VG, Thuy DT, Ngoc PK: Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells. Onco Targets Ther 2011, 4:71-8.
  • [25]Singh PK, Hollingsworth MA: Cell surface-associated mucins in signal transduction. Trends Cell Biol 2006, 16(9):467-476.
  • [26]Moncada DM, Kammanadiminiti SJ, Chadee K: Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 2003, 19(7):305-311.
  • [27]Linden SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin TH, Sutton P, McGuckin MA, Van Nhieu , Guy Tran : MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 2009, 5(10):e1000617.
  • [28]Gendler SJ: MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001, 6(3):339-353.
  • [29]Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004, 4(1):45-60.
  • [30]Pochampalli MR, el Bejjani RM, Schroeder JA: MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 2007, 26(12):1693-1701.
  • [31]Wei X, Xu H, Kufe D: Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancel Cell 2005, 7(2):167-178.
  • [32]Yamamoto M, Bharti A, Li Y, Kufe D: Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem 1997, 272(19):12492-4.
  • [33]Huang C, Qin D: Role of Lef1 in sustaining self-renewal in mouse embryonic stem cells. J Genet Genomics 2010, 37(7):441-9.
  • [34]Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL, Bajaj E, Shanmugam K, Lee YY, Hwang SIL, Gendler SJ, Mukherjee P: MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011, 30(12):1449-59.
  • [35]Ren J, Raina D, Chen W, Li G, Huang L, Kufe D: MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol Cancer Res 2006, 4(11):873-883.
  • [36]Fessler SP, Wotkowicz MT, Mahanta SK, Bamdad C: MUC1 is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat 2009, 118(1):113-24.
  • [37]Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI: ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 2007, 117(8):2051-8.
  • [38]Walker F, Abramowitz L, Benabderrahmane D, Duval X, Descatoire VR, Hénin D, Lehy TRS, Aparicio T: Growth factor receptor expression in anal squamous lesions: modifications associated with oncogenic human papillomavirus and human immunodeficiency virus. Human Pathology 2009, 40(11):1517-27.
  • [39]Verrier F, Deniaud A, Lebras M, Metivier D, Kroemer G, Mignotte B, Jan G, Brenner C: Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 2004, 23:8049-8064.
  • [40]Lupu R, Menendez JA: Targeting fatty acid synthase in breast and endometrial cancer: An alternative to selective estrogen receptor modulators? Endocrinology 2006, 147(9):4056-66.
  • [41]Gonzalez-Guerrico A, Lupu R: Fatty Acid Synthase (FASN) as a Therapeutic Target for Breast Cancer Metastasis. Cancer Res 2009., 69(24 Suppl) Abstract nr 6160
  • [42]Olsen AM, Eisenberg BL, Kuemmerle NB, Flanagan AJ, Morganelli PM, Lombardo PS, Swinnen JV, Kinlaw WB: Fatty acid synthesis is a therapeutic target in human liposarcoma. Int J Oncol 2010, 36(5):1309-14.
  • [43]Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T, Wakabayashi G, Koeda K, Kashiwaba M, Suzuki K, Chiba T, Endo M, Fujioka T, Tanji S, Mo YY, Cao D, Wilber AC, Watabe K: Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 2010, in press.
  • [44]Murata S, Yanagisawa K, Fukunaga K, Oda T, Kobayashi A, Sasaki R, Ohkohchi N: Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice. Cancer Sci 2010, 101(8):1861-5.
  • [45]Uddin S, Hussain AR, Ahmed M, Bu R, Ahmed SO, Ajarim D, Al-Dayel F, Bavi P, Al-Kuraya KS: Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Mol Cancer Ther 2010, 9(5):1244-55.
  • [46]Dowling S, Cox J, Cenedella RJ: Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids 2009, 44(6):489-98.
  • [47]Meng L, Gabai VL, Sherman MY: Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene 2010, 29(37):5204-13.
  • [48]Nakamura Y, Fujimoto M, Hayashida N, Takii R, Nakai A, Muto M: Silencing HSF1 by short hairpin RNA decreases cell proliferation and enhances sensitivity to hyperthermia in human melanoma cell lines. J Dermatol Sci 2010, 60(3):187-92.
  • [49]Whitesell L, Lindquist S: Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009, 13(4):469-78.
  • [50]Calderwood SK: Heat shock proteins in breast cancer progression--a suitable case for treatment? Int J Hyperthermia 2010, 26(7):681-5.
  • [51]Takebe Naoko, Harris PamelaJ, Warren RonaldQ, Percy Ivy S: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology 2011, 8(2):97-106.
  • [52]Suling Liu, Wicha MaxS: Targeting Breast Cancer Stem Cells. JCO 2010, 28(25):4006-4012.
  • [53]Curtin JC, Lorenzi MV: Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 2010, 1(7):563-77.
  • [54]Hernandez-Vargas H, Ouzounova M, Le Calvez-Kelm F, Lambert MP, McKay-Chopin S, Tavtigian SV, Puisieux A, Matar C, Herceg Z: Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics 2010, 6(4):428-39.
  • [55]Tirino V, Desiderio V, d'Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, Giordano A: Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One 2008, 3(10):e3469.
  • [56]Karimi-Busheri F, Rasouli-Nia A, Mackey JR, Weinfeld M: Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 2010, 12(3):R31. BioMed Central Full Text
  • [57]Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005, 65(13):5506-11.
  • [58]Takehara M, Hoshino T, Namba T, Yamakawa N, Mizushima T: Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochem Pharmacol 2011, 81(9):1124-35.
  • [59]Simões BM, Vivanco MD: Cancer stem cells in the human mammary gland and regulation of their differentiation by estrogen. Future Oncol 2011, 7(8):995-1006.
  • [60]Li RJ, Ying X, Zhang Y, Ju RJ, Wang XX, Yao HJ, Men Y, Tian W, Yu Y, Zhang L, Huang RJ, Lu WL: All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells. J Control Release 2011, 149(3):281-91.
  • [61]Cirenajwis H, Smiljanic S, Honeth G, Hegardt C, Marton LJ, Oredsson SM: Reduction of the putative CD44+CD24- breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer Drugs 2010, 21(10):897-906.
  • [62]Roy R, Willan P, Clarke R, Farnie G: Differentiation therapy: targeting breast cancer stem cells to reduce resistance to radiotherapy and chemotherapy. Breast Cancer Res 2010, 12(Suppl 1):O5. BioMed Central Full Text
  • [63]Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B, Schmidt M, von Kalle C, Howe S, Thrasher AJ, Aiuti A, Ferrari G, Recchia A, Mavilio F: Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007, 110(6):1770-8.
  • [64]Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, Naldini L: Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006, 24(6):687-696.
  文献评价指标  
  下载次数:0次 浏览次数:14次