期刊论文详细信息
Journal of Hematology & Oncology
Signaling pathways in the development of infantile hemangioma
Bo Xiang3  Chang Xu3  Li Li2  Kai Li4  Siyuan Chen1  Yi Ji3 
[1] Pediatric Intensive Care Unit, West China Hospital of Sichuan University, Chengdu 610041, China;Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China;Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China;Division of Oncology, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
关键词: Vasculogenesis;    Angiogenesis;    Neovascularization;    Infantile hemangioma;   
Others  :  802048
DOI  :  10.1186/1756-8722-7-13
 received in 2013-12-05, accepted in 2014-01-28,  发布年份 2014
PDF
【 摘 要 】

Infantile hemangioma (IH), which is the most common tumor in infants, is a benign vascular neoplasm resulting from the abnormal proliferation of endothelial cells and pericytes. For nearly a century, researchers have noted that IH exhibits diverse and often dramatic clinical behaviors. On the one hand, most lesions pose no threat or potential for complication and resolve spontaneously without concern in most children with IH. On the other hand, approximately 10% of IHs are destructive, disfiguring and even vision- or life-threatening. Recent studies have provided some insight into the pathogenesis of these vascular tumors, leading to a better understanding of the biological features of IH and, in particular, indicating that during hemangioma neovascularization, two main pathogenic mechanisms prevail, angiogenesis and vasculogenesis. Both mechanisms have been linked to alterations in several important cellular signaling pathways. These pathways are of interest from a therapeutic perspective because targeting them may help to reverse, delay or prevent hemangioma neovascularization. In this review, we explore some of the major pathways implicated in IH, including the VEGF/VEGFR, Notch, β-adrenergic, Tie2/angiopoietins, PI3K/AKT/mTOR, HIF-α-mediated and PDGF/PDGF-R-β pathways. We focus on the role of these pathways in the pathogenesis of IH, how they are altered and the consequences of these abnormalities. In addition, we review the latest preclinical and clinical data on the rationally designed targeted agents that are now being directed against some of these pathways.

【 授权许可】

   
2014 Ji et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708014821107.pdf 2299KB PDF download
Figure 5. 137KB Image download
Figure 4. 97KB Image download
Figure 3. 220KB Image download
Figure 2. 90KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mulliken JB, Fishman SJ, Burrows PE: Vascular anomalies. Curr Probl Surg 2000, 37(8):517-584.
  • [2]Drolet BA, Esterly NB, Frieden IJ: Hemangiomas in children. N Engl J Med 1999, 341(3):173-181.
  • [3]Margileth AM, Museles M: Cutaneous hemangiomas in children. Diagnosis and conservative management. JAMA 1965, 194(5):523-526.
  • [4]George ME, Sharma V, Jacobson J, Simon S, Nopper AJ: Adverse effects of systemic glucocorticosteroid therapy in infants with hemangiomas. Arch Dermatol 2004, 140(8):963-969.
  • [5]Goyal R, Watts P, Lane CM, Beck L, Gregory JW: Adrenal suppression and failure to thrive after steroid injections for periocular hemangioma. Ophthalmology 2004, 111(2):389-395.
  • [6]Neri I, Balestri R, Patrizi A: Hemangiomas: new insight and medical treatment. Dermatol Ther 2012, 25(4):322-334.
  • [7]Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, et al.: Growth characteristics of infantile hemangiomas: implications for management. Pediatrics 2008, 122(2):360-367.
  • [8]Chan H, McKay C, Adams S, Wargon O: RCT of timolol maleate gel for superficial infantile hemangiomas in 5- to 24-week-olds. Pediatrics 2013, 131(6):e1739-e1747.
  • [9]Malik MA, Menon P, Rao KL, Samujh R: Effect of propranolol vs prednisolone vs propranolol with prednisolone in the management of infantile hemangioma: a randomized controlled study. J Pediatr Surg 2013, 48(12):2453-2459.
  • [10]Hogeling M, Adams S, Wargon O: A randomized controlled trial of propranolol for infantile hemangiomas. Pediatrics 2011, 128(2):e259-e266.
  • [11]Leaute-Labreze C, Dumas DLRE, Hubiche T, Boralevi F, Thambo JB, Taieb A: Propranolol for severe hemangiomas of infancy. N Engl J Med 2008, 358(24):2649-2651.
  • [12]Causse S, Aubert H, Saint-Jean M, Puzenat E, Bursztejn AC, Eschard C, Mahe E, Maruani A, Mazereeuw-Hautier J, Dreyfus I, et al.: Propranolol-resistant infantile haemangiomas. Br J Dermatol 2013, 169(1):125-129.
  • [13]Shehata N, Powell J, Dubois J, Hatami A, Rousseau E, Ondrejchak S, McCuaig C: Late rebound of infantile hemangioma after cessation of oral propranolol. Pediatr Dermatol 2013, 30(5):587-591.
  • [14]Mulliken JB, Glowacki J: Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982, 69(3):412-422.
  • [15]Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J: Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008, 118(7):2592-2599.
  • [16]Yu Y, Fuhr J, Boye E, Gyorffy S, Soker S, Atala A, Mulliken JB, Bischoff J: Mesenchymal stem cells and adipogenesis in hemangioma involution. Stem Cells 2006, 24(6):1605-1612.
  • [17]Yu Y, Flint AF, Mulliken JB, Wu JK, Bischoff J: Endothelial progenitor cells in infantile hemangioma. Blood 2004, 103(4):1373-1375.
  • [18]Dosanjh A, Chang J, Bresnick S, Zhou L, Reinisch J, Longaker M, Karasek M: In vitro characteristics of neonatal hemangioma endothelial cells: similarities and differences between normal neonatal and fetal endothelial cells. J Cutan Pathol 2000, 27(9):441-450.
  • [19]Yuan SM, Chen RL, Shen WM, Chen HN, Zhou XJ: Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol 2012, 15(1):5-12.
  • [20]Xu D, TM O, Shartava A, Fowles TC, Yang J, Fink LM, Ward DC, Mihm MC, Waner M, Ma Y: Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol 2011, 4:54. BioMed Central Full Text
  • [21]Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J: Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 2010, 362(11):1005-1013.
  • [22]Mai HM, Zheng JW, Wang YA, Yang XJ, Zhou Q, Qin ZP, Li KL: CD133 selected stem cells from proliferating infantile hemangioma and establishment of an in vivo mice model of hemangioma. Chin Med J (Engl) 2013, 126(1):88-94.
  • [23]Li Z: CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2013, 2(1):17. BioMed Central Full Text
  • [24]Greenberger S, Bischoff J: Pathogenesis of infantile haemangioma. Br J Dermatol 2013, 169(1):12-19.
  • [25]Boscolo E, Bischoff J: Vasculogenesis in infantile hemangioma. Angiogenesis 2009, 12(2):197-207.
  • [26]Verheul HM, Pinedo HM: The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin Breast Cancer 2000, 1(Suppl 1):S80-S84.
  • [27]Przewratil P, Sitkiewicz A, Andrzejewska E: Local serum levels of vascular endothelial growth factor in infantile hemangioma: intriguing mechanism of endothelial growth. Cytokine 2010, 49(2):141-147.
  • [28]Zhang L, Lin X, Wang W, Zhuang X, Dong J, Qi Z, Hu Q: Circulating level of vascular endothelial growth factor in differentiating hemangioma from vascular malformation patients. Plast Reconstr Surg 2005, 116(1):200-204.
  • [29]Shibuya M: Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 2006, 9(4):225-230. 231
  • [30]Dimmeler S, Zeiher AM: Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 2000, 87(6):434-439.
  • [31]Huang HY, Ho CC, Huang PH, Hsu SM: Co-expression of VEGF-C and its receptors, VEGFR-2 and VEGFR-3, in endothelial cells of lymphangioma. Implication in autocrine or paracrine regulation of lymphangioma. Lab Invest 2001, 81(12):1729-1734.
  • [32]Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, et al.: Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 2007, 117(11):3369-3382.
  • [33]Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek JJ, Fischer W, Lukas J, et al.: Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012, 209(3):507-520.
  • [34]Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006, 7(5):359-371.
  • [35]Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP: VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 1999, 247(2):495-504.
  • [36]Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998, 273(46):30336-30343.
  • [37]Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med 2003, 9(6):669-676.
  • [38]Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N: VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002, 417(6892):954-958.
  • [39]Medici D, Olsen BR: Rapamycin inhibits proliferation of hemangioma endothelial cells by reducing HIF-1-dependent expression of VEGF. PLoS One 2012, 7(8):e42913.
  • [40]Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR: Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 2008, 14(11):1236-1246.
  • [41]Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, Reinisch JF, Marchuk DA: Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 2002, 33(3):295-303.
  • [42]Boscolo E, Mulliken JB, Bischoff J: Pericytes from infantile hemangioma display proangiogenic properties and dysregulated angiopoietin-1. Arterioscler Thromb Vasc Biol 2013, 33(3):501-509.
  • [43]Boscolo E, Stewart CL, Greenberger S, Wu JK, Durham JT, Herman IM, Mulliken JB, Kitajewski J, Bischoff J: JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011, 31(10):2181-2192.
  • [44]Wu JK, Adepoju O, De Silva D, Baribault K, Boscolo E, Bischoff J, Kitajewski J: A switch in Notch gene expression parallels stem cell to endothelial transition in infantile hemangioma. Angiogenesis 2010, 13(1):15-23.
  • [45]Lee JJ, Chen CH, Chen YH, Huang MJ, Huang J, Hung JS, Chen MT, Huang MC: COSMC is overexpressed in proliferating infantile hemangioma and enhances endothelial cell growth via VEGFR2. PLoS One 2013, 8(2):e56211.
  • [46]Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M: Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 2010, 140(2):268-279.
  • [47]Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML: Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007, 130(4):691-703.
  • [48]Ji Y, Chen S, Li K, Xiao X, Xu T, Zheng S: Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br J Dermatol 2014, 170(1):78-86.
  • [49]Franco M, Roswall P, Cortez E, Hanahan D, Pietras K: Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 2011, 118(10):2906-2917.
  • [50]Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL: Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002, 99(7):2397-2407.
  • [51]Fong GH, Rossant J, Gertsenstein M, Breitman ML: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995, 376(6535):66-70.
  • [52]Calicchio ML, Collins T, Kozakewich HP: Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. Am J Pathol 2009, 174(5):1638-1649.
  • [53]Boscolo E, Mulliken JB, Bischoff J: VEGFR-1 mediates endothelial differentiation and formation of blood vessels in a murine model of infantile hemangioma. Am J Pathol 2011, 179(5):2266-2277.
  • [54]Iso T, Hamamori Y, Kedes L: Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 2003, 23(4):543-553.
  • [55]Gridley T: Notch signaling during vascular development. Proc Natl Acad Sci U S A 2001, 98(10):5377-5378.
  • [56]Adepoju O, Wong A, Kitajewski A, Tong K, Boscolo E, Bischoff J, Kitajewski J, Wu JK: Expression of HES and HEY genes in infantile hemangiomas. Vasc Cell 2011, 3:19. BioMed Central Full Text
  • [57]Dufraine J, Funahashi Y, Kitajewski J: Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 2008, 27(38):5132-5137.
  • [58]Lanner F, Sohl M, Farnebo F: Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation. Arterioscler Thromb Vasc Biol 2007, 27(3):487-493.
  • [59]Li JL, Harris AL: Notch signaling from tumor cells: a new mechanism of angiogenesis. Cancer Cell 2005, 8(1):1-3.
  • [60]Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, et al.: Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000, 14(11):1343-1352.
  • [61]Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T: Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 1999, 8(5):723-730.
  • [62]Hainaud P, Contreres JO, Villemain A, Liu LX, Plouet J, Tobelem G, Dupuy E: The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 2006, 66(17):8501-8510.
  • [63]Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005, 65(19):8690-8697.
  • [64]Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006, 444(7122):1032-1037.
  • [65]Williams CK, Li JL, Murga M, Harris AL, Tosato G: Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 2006, 107(3):931-939.
  • [66]Zhang J, Ye J, Ma D, Liu N, Wu H, Yu S, Sun X, Tse W, Ji C: Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway. Carcinogenesis 2013, 34(3):667-677.
  • [67]Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007, 445(7129):776-780.
  • [68]Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 2009, 137(6):1124-1135.
  • [69]Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al.: Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 2005, 102(12):4459-4464.
  • [70]Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della RG, Lin F, Kawakatsu H, Owada K, Luttrell DK, et al.: Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999, 283(5402):655-661.
  • [71]Ji Y, Chen S, Xiao X, Zheng S, Li K: beta-blockers: a novel class of antitumor agents. Onco Targets Ther 2012, 5:391-401.
  • [72]Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB, Bottsford-Miller J, et al.: Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem 2010, 285(46):35462-35470.
  • [73]Bernabe DG, Tamae AC, Biasoli ER, Oliveira SH: Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain Behav Immun 2011, 25(3):574-583.
  • [74]Cole SW, Arevalo JM, Takahashi R, Sloan EK, Lutgendorf SK, Sood AK, Sheridan JF, Seeman TE: Computational identification of gene-social environment interaction at the human IL6 locus. Proc Natl Acad Sci U S A 2010, 107(12):5681-5686.
  • [75]Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S: Catecholamines regulate tumor angiogenesis. Cancer Res 2009, 69(9):3727-3730.
  • [76]Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al.: Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006, 12(8):939-944.
  • [77]Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N, Kavallaris M: beta-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer 2013, 108(12):2485-2494.
  • [78]Ji Y, Chen S: Comment on 'Beta-blockers increase response to chemotherapy via direct anti-tumour and anti-angiogenic mechanisms in neuroblastoma’. Br J Cancer 2013, 109(7):2022-2023.
  • [79]Entschladen F, Drell TT, Lang K, Joseph J, Zaenker KS: Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 2004, 5(4):254-258.
  • [80]Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S, Cole SW: Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006, 12(2):369-375.
  • [81]Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, Han LY, Mangala LS, Villares GJ, Vivas-Mejia P, et al.: Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 2013, 4:1403.
  • [82]Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, Carson JP, Weber MJ, Register TC, Chen YQ, et al.: Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 2007, 282(19):14094-14100.
  • [83]Sood AK, Armaiz-Pena GN, Halder J, Nick AM, Stone RL, Hu W, Carroll AR, Spannuth WA, Deavers MT, Allen JK, et al.: Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 2010, 120(5):1515-1523.
  • [84]Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino RJ, Danial N, et al.: Behavioral stress accelerates prostate cancer development in mice. J Clin Invest 2013, 123(2):874-886.
  • [85]Ji Y, Li K, Xiao X, Zheng S, Xu T, Chen S: Effects of propranolol on the proliferation and apoptosis of hemangioma-derived endothelial cells. J Pediatr Surg 2012, 47(12):2216-2223.
  • [86]Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, et al.: A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 2011, 477(7364):349-353.
  • [87]Glaser R, Kiecolt-Glaser JK: Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005, 5(3):243-251.
  • [88]Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S: Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 2011, 253(4):798-810.
  • [89]Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, Meiboom H, Ben-Eliyahu S: Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol 2010, 184(5):2449-2457.
  • [90]Ji Y, Chen S: Do antihypertensive medications influence breast cancer risk? JAMA Intern Med 2014,  . In press
  • [91]Pope E, Chakkittakandiyil A, Lara-Corrales I, Maki E, Weinstein M: Expanding the therapeutic repertoire of infantile haemangiomas: cohort-blinded study of oral nadolol compared with propranolol. Br J Dermatol 2013, 168(1):222-224.
  • [92]Powe DG, Entschladen F: Targeted therapies: using beta-blockers to inhibit breast cancer progression. Nat Rev Clin Oncol 2011, 8(9):511-512.
  • [93]Hadaschik E, Scheiba N, Engstner M, Flux K: High levels of beta2-adrenoceptors are expressed in infantile capillary hemangiomas and may mediate the therapeutic effect of propranolol. J Cutan Pathol 2012, 39(9):881-883.
  • [94]Chisholm KM, Chang KW, Truong MT, Kwok S, West RB, Heerema-McKenney AE: beta-Adrenergic receptor expression in vascular tumors. Mod Pathol 2012, 25(11):1446-1451.
  • [95]Rossler J, Haubold M, Gilsbach R, Juttner E, Schmitt D, Niemeyer CM, Hein L: beta1-Adrenoceptor mRNA level reveals distinctions between infantile hemangioma and vascular malformations. Pediatr Res 2013, 73(4 Pt 1):409-413.
  • [96]Ji Y, Chen S, Li K, Xiao X, Zheng S, Xu T: The role of beta-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div 2013, 8(1):1. BioMed Central Full Text
  • [97]Mayer M, Minichmayr A, Klement F, Hroncek K, Wertaschnigg D, Arzt W, Wiesinger-Eidenberger G, Lechner E: Tocolysis with the beta-2-sympathomimetic hexoprenaline increases occurrence of infantile haemangioma in preterm infants. Arch Dis Child Fetal Neonatal Ed 2013, 98(2):F108-F111.
  • [98]Ji Y, Chen S, Li K, Xiao X, Zheng S: Propranolol: a novel anti-hemangioma agent with multiple potential mechanisms of action. Ann Surg 2013,  . In press
  • [99]Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY: Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 2005, 280(20):20126-20131.
  • [100]Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ: Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 1999, 274(43):30896-30905.
  • [101]Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ: A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 2003, 23(8):2658-2668.
  • [102]Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, Quaggin SE: Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 2011, 121(6):2278-2289.
  • [103]Koh GY: Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol Med 2013, 19(1):31-39.
  • [104]Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J: Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 2001, 159(6):2271-2280.
  • [105]Boye E, Olsen BR: Signaling mechanisms in infantile hemangioma. Curr Opin Hematol 2009, 16(3):202-208.
  • [106]Chen TS, Eichenfield LF, Friedlander SF: Infantile hemangiomas: an update on pathogenesis and therapy. Pediatrics 2013, 131(1):99-108.
  • [107]Ritter MR, Reinisch J, Friedlander SF, Friedlander M: Myeloid cells in infantile hemangioma. Am J Pathol 2006, 168(2):621-628.
  • [108]Kleinman ME, Greives MR, Churgin SS, Blechman KM, Chang EI, Ceradini DJ, Tepper OM, Gurtner GC: Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol 2007, 27(12):2664-2670.
  • [109]Storch CH, Hoeger PH: Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action. Br J Dermatol 2010, 163(2):269-274.
  • [110]Chim H, Armijo BS, Miller E, Gliniak C, Serret MA, Gosain AK: Propranolol induces regression of hemangioma cells through HIF-1alpha-mediated inhibition of VEGF-A. Ann Surg 2012, 256(1):146-156.
  • [111]Chen G, Zhang W, Li YP, Ren JG, Xu N, Liu H, Wang FQ, Sun ZJ, Jia J, Zhao YF: Hypoxia-induced autophagy in endothelial cells: a double-edged sword in the progression of infantile haemangioma? Cardiovasc Res 2013, 98(3):437-448.
  • [112]Lamming DW, Ye L, Sabatini DM, Baur JA: Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 2013, 123(3):980-989.
  • [113]Benjamin D, Colombi M, Moroni C, Hall MN: Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011, 10(11):868-880.
  • [114]Slomovitz BM, Coleman RL: The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 2012, 18(21):5856-5864.
  • [115]Greenberger S, Yuan S, Walsh LA, Boscolo E, Kang KT, Matthews B, Mulliken JB, Bischoff J: Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J Invest Dermatol 2011, 131(12):2467-2476.
  • [116]Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA: Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 1999, 82(1):77-83.
  • [117]Bjarnegard M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, Takemoto M, Gustafsson E, Fassler R, Betsholtz C: Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 2004, 131(8):1847-1857.
  • [118]Stratman AN, Schwindt AE, Malotte KM, Davis GE: Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 2010, 116(22):4720-4730.
  • [119]Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM: Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 2007, 67(15):7358-7367.
  • [120]Pietras K, Hanahan D: A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 2005, 23(5):939-952.
  • [121]Roach EE, Chakrabarti R, Park NI, Keats EC, Yip J, Chan NG, Khan ZA: Intrinsic regulation of hemangioma involution by platelet-derived growth factor. Cell Death Dis 2012, 3:e328.
  • [122]Wnuk M, Hlushchuk R, Tuffin G, Huynh-Do U, Djonov V: The effects of PTK787/ZK222584, an inhibitor of VEGFR and PDGFRbeta pathways, on intussusceptive angiogenesis and glomerular recovery from Thy1.1 nephritis. Am J Pathol 2011, 178(4):1899-1912.
  • [123]Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. Faseb J 2004, 18(2):338-340.
  文献评价指标  
  下载次数:10次 浏览次数:4次