期刊论文详细信息
Cell & Bioscience
Microinjection of specific anti-IMPDH2 antibodies induces disassembly of cytoplasmic rods/rings that are primarily stationary and stable structures
Edward K L Chan1  Scott S Grieshaber2  Luís Eduardo C Andrade3  Gerson Dierley Keppeke4 
[1]Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA
[2]Department of Biological Sciences, University of Idaho, 875 Center Drive, Moscow, ID 83844, USA
[3]Immunology Division, Fleury Medicine and Health Laboratories, Avenida Gal Waldomiro Lima 508, São Paulo, SP 04102-050, Brazil
[4]Rheumatology Division, Universidade Federal de São Paulo, Rua Botucatu 740, São Paulo, SP 04023-062, Brazil
关键词: Ribavirin;    Mycophenolic acid;    Intracellular compartment;    Inosine monophosphate dehydrogenase;    Cytoophidium;    CTP synthase;   
Others  :  1135257
DOI  :  10.1186/2045-3701-5-1
 received in 2014-07-25, accepted in 2014-12-18,  发布年份 2015
PDF
【 摘 要 】

Background

Our laboratory previously reported interesting rods 3–10 μm long and rings 2–5 μm diameter (RR) in the cytoplasm of mammalian cells. Experimental evidence show that both inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and cytidine triphosphate synthetase (CTPS) are components of RR structures. Several cell types, including mouse embryonic stem cells, and cell lines, such as mouse 3 T3 and rat NRK, naturally present RR structures, while other cells can present RR when treated with compounds interfering with GTP/CTP biosynthetic pathways. In this study, we aimed to investigate the dynamic behavior of these RR in live cells.

Results

RR were detected in >90% of COS-7 and HeLa cells treated with 1 mM ribavirin or 6-Diazo-5-oxo-L-norleucine (DON) for 24 h, and in 75% of COS-7 cells treated with 1 mM mycophenolic acid (MPA) for the same period of time. Microinjection of affinity-purified anti-IMPDH2 antibodies in live COS-7 cells treated with ribavirin, DON, or MPA showed mature forms of RR presented as stable and stationary structures in 71% of cells. In the remaining 29% of cells, RR acquired erratic movement and progressively disassembled into fragments and disappeared within 10 min. The specific stationary state and antibody-dependent disassembling of RR structures was independently confirmed in COS-7 and HeLa cells transfected with GFP-tagged IMPDH2.

Conclusions

This is the first demonstration of disassembly of RR structures upon microinjection of anti-IMPDH2 antibodies that led to the disappearance of the molecular aggregates. The disassembly of RR after microinjection of anti-IMPDH2 antibody further strengthens the notion that IMPDH2 are major building blocks of RR. Using two independent methods, this study demonstrated that the induced RR are primarily stationary structures in live cells and that IMPDH2 is a key component of RR.

【 授权许可】

   
2015 Keppeke et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150307031231576.pdf 2119KB PDF download
Figure 4. 69KB Image download
Figure 3. 119KB Image download
Figure 2. 83KB Image download
Figure 1. 149KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Carcamo WC, Calise SJ, von Muhlen CA, Satoh M, Chan EK: Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol 2014, 308:35-74.
  • [2]Carcamo WC, Satoh M, Kasahara H, Terada N, Hamazaki T, Chan JY, et al.: Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS One 2011, 6:e29690.
  • [3]Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, et al.: Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One 2012, 7:e51096.
  • [4]Liu JL: Intracellular compartmentation of CTP synthase in Drosophila. J Genet Genomics 2010, 37:281-296.
  • [5]Azzam G, Liu JL: Only one isoform of Drosophila melanogaster CTP synthase forms the cytoophidium. PLoS Genet 2013, 9:e1003256.
  • [6]O'Connell JD, Zhao A, Ellington AD, Marcotte EM: Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol 2012, 28:89-111.
  • [7]Barry RM, Bitbol AF, Lorestani A, Charles EJ, Habrian CH, Hansen JM, et al.: Large-scale filament formation inhibits the activity of CTP synthetase. Elife 2014, 3:e03638.
  • [8]Aughey GN, Grice SJ, Shen QJ, Xu Y, Chang CC, Azzam G, Wang PY, Freeman-Mills L, Pai LM, Sung LY, Yan J, Liu JL: Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism. Biology open 2014, 3:1045-1056.
  • [9]Strochlic TI, Stavrides KP, Thomas SV, Nicolas E, O'Reilly AM, Peterson JR: Ack kinase regulates CTP synthase filaments during Drosophila oogenesis. EMBO Rep 2014, 15:1184-1191.
  • [10]Probst C, Radzimski C, Blocker IM, Teegen B, Bogdanos DP, Stocker W, et al.: Development of a recombinant cell-based indirect immunofluorescence assay (RC-IFA) for the determination of autoantibodies against "rings and rods"-associated inosine-5'-monophosphate dehydrogenase 2 in viral hepatitis C. Clin Chim Acta 2013, 418:91-96.
  • [11]Keppeke GD, Nunes E, Ferraz ML, Silva EA, Granato C, Chan EK, et al.: Longitudinal study of a human drug-induced model of autoantibody to cytoplasmic rods/rings following HCV therapy with ribavirin and interferon-alpha. PLoS One 2012, 7:e45392.
  • [12]Covini G, Carcamo WC, Bredi E, von Muhlen CA, Colombo M, Chan EKL: Cytoplasmic rods and rings autoantibodies developed during pegylated interferon and ribavirin therapy in patients with chronic hepatitis C. Antivir Ther 2012, 17:805-811.
  • [13]Seelig HP, Appelhans H, Bauer O, Bluthner M, Hartung K, Schranz P, et al.: Autoantibodies against inosine-5'-monophosphate dehydrogenase 2–characteristics and prevalence in patients with HCV-infection. Clin Lab 2011, 57:753-765.
  • [14]Keppeke GD, Satoh M, Ferraz ML, Chan EK, Andrade LE: Temporal evolution of human autoantibody response to cytoplasmic rods and rings structure during anti-HCV therapy with ribavirin and interferon-alpha. Immunol Res 2014, 60:38-49.
  • [15]Stinton LM, Myers RP, Coffin CS, Fritzler MJ: Clinical associations and potential novel antigenic targets of autoantibodies directed against rods and rings in chronic hepatitis C infection. BMC Gastroenterol 2013, 13:50. BioMed Central Full Text
  • [16]Balint S, Verdeny Vilanova I, Sandoval Alvarez A, Lakadamyali M: Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc Natl Acad Sci U S A 2013, 110:3375-3380.
  • [17]Orzech E, Livshits L, Leyt J, Okhrimenko H, Reich V, Cohen S, et al.: Interactions between adaptor protein-1 of the clathrin coat and microtubules via type 1a microtubule-associated proteins. J Biol Chem 2001, 276:31340-31348.
  • [18]Ross JL, Ali MY, Warshaw DM: Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 2008, 20:41-47.
  • [19]Shima DT, Cabrera-Poch N, Pepperkok R, Warren G: An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J Cell Biol 1998, 141:955-966.
  • [20]Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, et al.: Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 2008, 121:4134-4144.
  • [21]Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EKL: The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 2009, 15:804-813.
  • [22]Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M: Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 2006, 69:933-939.
  • [23]Jockusch BM, Zurek B, Zahn R, Westmeyer A, Fuchtbauer A: Antibodies against vertebrate microfilament proteins in the analysis of cellular motility and adhesion. J Cell Sci Suppl 1991, 14:41-47.
  • [24]Lamb NJ, Gauthier-Rouviere C, Fernandez A: Microinjection strategies for the study of mitogenic signaling in mammalian cells. Front Biosci 1996, 1:d19-d29.
  • [25]Benavente R, Krohne G: In vivo systems to study the dynamics of nuclear lamins. Methods Cell Biol 1998, 53:591-602.
  • [26]Tolle HG, Weber K, Osborn M: Microinjection of monoclonal antibodies specific for one intermediate filament protein in cells containing multiple keratins allow insight into the composition of particular 10 nm filaments. Eur J Cell Biol 1985, 38:234-244.
  • [27]Meyer T, Weber K, Osborn M: Microinjection of IFA antibody induces intermediate filament aggregates in epithelial cell lines but perinuclear coils in fibroblast-like lines. Eur J Cell Biol 1992, 57:75-87.
  • [28]Carcamo WC, Ceribelli A, Calise SJ, Krueger C, Liu C, Daves M, et al.: Differential reactivity to IMPDH2 by anti-rods/rings autoantibodies and unresponsiveness to pegylated interferon-alpha/ribavirin therapy in US and Italian HCV patients. J Clin Immunol 2013, 33:420-426.
  • [29]Ellis RJ: Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 2001, 11:114-119.
  • [30]Luby-Phelps K: Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 2000, 192:189-221.
  • [31]Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, et al.: Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 2008, 7:2392-2400.
  • [32]Ji Y, Gu J, Makhov AM, Griffith JD, Mitchell BS: Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic Acid by GTP. J Biol Chem 2006, 281:206-212.
  • [33]Calise SJ, Carcamo WC, Krueger C, Yin JD, Purich DL, Chan EK: Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell Mol Life Sci 2014, 71:2963-2973.
  • [34]Collart FR, Chubb CB, Mirkin BL, Huberman E: Increased inosine-5'-phosphate dehydrogenase gene expression in solid tumor tissues and tumor cell lines. Cancer Res 1992, 52:5826-5828.
  • [35]Jackson RC, Weber G, Morris HP: IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 1975, 256:331-333.
  • [36]Gou KM, Chang CC, Shen QJ, Sung LY, Liu JL: CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp Cell Res 2014, 323:242-253.
  • [37]Tolle HG, Weber K, Osborn M: Microinjection of monoclonal antibodies to vimentin, desmin, and GFA in cells which contain more than one IF type. Exp Cell Res 1986, 162:462-474.
  • [38]Thyberg J, Moskalewski S: Role of microtubules in the organization of the Golgi complex. Exp Cell Res 1999, 246:263-279.
  • [39]Vaisberg EA, Grissom PM, McIntosh JR: Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 1996, 133:831-842.
  • [40]Morgan DO, Roth RA: Analysis of intracellular protein function by antibody injection. Immunol Today 1988, 9:84-88.
  • [41]Lee GM: Measurement of volume injected into individual cells by quantitative fluorescence microscopy. J Cell Sci 1989, 94(Pt 3):443-447.
  • [42]Minaschek G, Bereiter-Hahn J, Bertholdt G: Quantitation of the volume of liquid injected into cells by means of pressure. Exp Cell Res 1989, 183:434-442.
  • [43]Furuta K, Chan EKL, Kiyosawa K, Reimer G, Luderschmidt C, Tan EM: Heterochromatin protein HP1Hsbeta (p25beta) and its localization with centromeres in mitosis. Chromosoma 1997, 106:11-19.
  • [44]Jakymiw A, Ikeda K, Fritzler MJ, Reeves WH, Satoh M, Chan EKL: Autoimmune targeting of key components of RNA interference. Arthritis Res Ther 2006, 8:R87. BioMed Central Full Text
  文献评价指标  
  下载次数:19次 浏览次数:7次